


Lecture Notes in Computer Science 4664
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Jérôme Durand-Lose
Maurice Margenstern (Eds.)

Machines, Computations,
and Universality

5th International Conference, MCU 2007
Orléans, France, September 10-13, 2007
Proceedings

13



Volume Editors

Jérôme Durand-Lose
Laboratoire d’Informatique Fondamentale d’Orléans
Université d’Orléans
B.P. 6759, F-45067 ORLÉANS Cedex 2,
E-mail: Jerome.Durand-Lose@univ-orleans.fr

Maurice Margenstern
Université Paul Verlaine - Metz
UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France
E-mail: margens@univ-metz.fr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): B.6.1, F.1.1, K.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74592-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74592-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115495 06/3180 5 4 3 2 1 0



Preface

In this volume, the reader will first find the invited talks given during the con-
ference. Then, in a second part, he/she will find the contributions that were
accepted for the conference after selection. In both cases, papers are given in the
alphabetical order of the authors.

MCU 2007 was the fifth edition of the conference in theoretical computer sci-
ence, Machines, Computations and Universality. The first and second editions,
MCU 1995 and MCU 1998, at that time called Machines et calculs universels,
were organized by Maurice Margenstern, in Paris and in Metz (France), respec-
tively. The third edition, MCU 2001, was the first one to be organized outside
France, and it was held in Chişinău (Moldova). Its co-organizers were Maurice
Margenstern and Yurii Rogozhin. The proceedings of MCU 2001 were the first
to appear in Lecture Notes in Computer Science, see LNCS 2055. The fourth
edition, MCU 2004, was held in Saint-Petersburg. Its co-organizers were Maurice
Margenstern, Anatoly Beltiukov and Nikolai Kossovski. The proceedings of the
invited papers and the papers presented at the conference after selection were
published in an issue of Lecture Notes in Computer Science, LNCS 3354, after
the conference, as revised selected papers.

From its very beginning, the MCU conference has been an international sci-
entific event, and also from the very beginning, it has always aimed to be of a
high scientific standard. This edition confirmed the initial goal of the MCU con-
ference with its triennial periodicity. Every three years, we are able to measure
the advances made in the field. And on each occasion we have witnessed some
very interesting results.

MCU 2007 was held in Orléans (France) in September 2007. The topics cov-
ered proved the vitality of the domains featured in the previous edition, namely
cellular automata, molecular computing and super-Turing computations. This
time, new results were presented in cellular automata, namely for solutions of the
synchronization problem, as well as a new approach for the theoretical study of
cellular automata in connection with their neighborhoods. Universality results in
molecular computing continued to be a topic of interest, with the modelizations
becoming more and more refined and getting closer to biological phenomena.
Also included was a very interesting modelization of the Kolmogorov-Uspensky
Machine by bio-chemical reactions organized in a reaction-diffusion computer.

Super-Turing computations played an important role this year. We saw con-
tinuations of models presented in Saint-Petersburg where recursivity and univer-
sality results on reals were investigated. We also saw new aspects of super-Turing
computations with infinite time machines and inductive Turing machines. With
respect to the infinite time Turing machine, a very good survey was presented
giving important results obtained in this domain in recent years.



VI Preface

A number of papers focussed on the various problems surrounding the theory
of formal languages connected with universality or decidability procedures.

We also witnessed a renewal of the traditional core of the MCU conference
with a new universal reversible Turing machine and new small universal Turing
machines, the first new result of this kind since MCU 2001: although it is now
much more difficult, the race for the smallest universal Turing machine goes on.
These proceedings also include new results from an older field of research, that of
tag-systems, intensively used in small universal Turing machines but not studied
for themselves since Pager’s results in 1970.

We hope that the reader will be impressed by the well-written papers and
the important results presented in this volume.

We would like to take this opportunity to thank the referees of the submitted
papers for their very efficient work. Submission, refereeing and preparation of the
proceedings was carried out with the help of EasyChair (http://www.easychair.org).
We would like to express our appreciation of this conference system.

The members of the program committee gave us decisive help on this occa-
sion. Thanks to them, namely Erzsébet Csuhaj-Varjú, Ansheng Li, Jean-Yves
Marion, Gheorghe Păun, Yurii Rogozhin, Grzegorz Rozenberg, Jǐri Wiedermann,
Damien Woods, we can offer the reader this issue of LNCS.

MCU 2007 was supported by a number of sponsors, who are listed on the
next page. We would like to extend our gratitude to all of them.

July 2007 Jérôme Durand-Lose
Maurice Margenstern



Sponsors

Laboratoire d’Informatique Fondamentale d’Orléans

Université d’Orléans

LITA, Université de Metz

Conseil Régional Région Centre

Conseil Général du Loiret

Mairie d’Orléans

GDR 673 du CNRS Informatique Mathématique



Table of Contents

Invited Talks

Encapsulating Reaction-Diffusion Computers . . . . . . . . . . . . . . . . . . . . . . . . 1
Andrew Adamatzky

On the Computational Capabilities of Several Models . . . . . . . . . . . . . . . . . 12
Olivier Bournez and Emmanuel Hainry

Universality, Reducibility, and Completeness . . . . . . . . . . . . . . . . . . . . . . . . 24
Mark Burgin

Using Approximation to Relate Computational Classes over the
Reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Manuel L. Campagnolo and Kerry Ojakian

A Survey of Infinite Time Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Joel David Hamkins

The Tiling Problem Revisited (Extended Abstract) . . . . . . . . . . . . . . . . . . . 72
Jarkko Kari

Decision Versus Evaluation in Algebraic Complexity . . . . . . . . . . . . . . . . . . 80
Pascal Koiran

A Universal Reversible Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Kenichi Morita and Yoshikazu Yamaguchi

P Systems and Picture Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
K.G. Subramanian

Regular Papers

Partial Halting in P Systems Using Membrane Rules with Permitting
Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Artiom Alhazov, Rudolf Freund, Marion Oswald, and Sergey Verlan

Uniform Solution of QSAT Using Polarizationless Active Membranes . . . . 122
Artiom Alhazov and Mario J. Pérez-Jiménez

Satisfiability Parsimoniously Reduces to the TantrixTM Rotation
Puzzle Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Dorothea Baumeister and Jörg Rothe

Planar Trivalent Network Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Tommaso Bolognesi



X Table of Contents

On the Power of Networks of Evolutionary Processors . . . . . . . . . . . . . . . . 158
Jürgen Dassow and Bianca Truthe

Study of Limits of Solvability in Tag Systems . . . . . . . . . . . . . . . . . . . . . . . . 170
Liesbeth De Mol

Query Completeness of Skolem Machine Computations . . . . . . . . . . . . . . . 182
John Fisher and Marc Bezem

More on the Size of Higman-Haines Sets: Effective Constructions . . . . . . . 193
Hermann Gruber, Markus Holzer, and Martin Kutrib

Insertion-Deletion Systems with One-Sided Contexts . . . . . . . . . . . . . . . . . 205
Artiom Matveevici, Yurii Rogozhin, and Sergey Verlan

Accepting Networks of Splicing Processors with Filtered Connections . . . 218
Juan Castellanos, Florin Manea,
Luis Fernando de Mingo López, and Victor Mitrana

Hierarchical Relaxations of the Correctness Preserving Property for
Restarting Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Frantisek Mráz, Friedrich Otto, and Martin Plátek

Four Small Universal Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Turlough Neary and Damien Woods

Changing the Neighborhood of Cellular Automata . . . . . . . . . . . . . . . . . . . 255
Hidenosuke Nishio

A Simple P-Complete Problem and Its Representations by Language
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Alexander Okhotin

Slightly Beyond Turing’s Computability for Studying Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Olivier Teytaud

A Smallest Five-State Solution to the Firing Squad Synchronization
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Hiroshi Umeo and Takashi Yanagihara

Small Semi-weakly Universal Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 303
Damien Woods and Turlough Neary

Simple New Algorithms Which Solve the Firing Squad Synchronization
Problem: A 7-States 4n-Steps Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Jean-Baptiste Yunès

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325



Encapsulating Reaction-Diffusion Computers

Andrew Adamatzky

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England, Bristol BS16 1QY, United Kingdom

andrew.adamatzky@uwe.ac.uk

Abstract. Reaction-diffusion computers employ propagation of chem-
ical and excitation waves to transmit information; they use collisions
between traveling wave-fronts to perform computation. We increase ap-
plicability domain of the reaction-diffusion computers by encapsulating
them in a membrane, in a form of vegetative state, plasmodium, of true
slime mold. In such form reaction-diffusion computers can also realize
Kolmogorov-Uspensky machine.

1 From Reaction-Diffusion Computers to Plasmodium

In reaction-diffusion computers [2,4] data are presented by initial concentra-
tion profile or configuration of disturbance (e.g. sites of stimulation of excitable
media), information is transfered by spreading wave patterns, computation is
implemented in collisions of wave-fronts, and final concentration profile repre-
sents results of the computation. Reaction-diffusion computers are theoretically
and experimentally proved to be capable for quite sophisticated computational
tasks, including image processing, computational geometry, logics and arith-
metics, and robot control, see extensive overview of theoretical and experimental
results in [4].

There is a particular feature of reaction-diffusion chemical computers. In their
classical, and so far commonly accepted form, the media are ‘fully conductive’
for chemical or excitation waves. Every point of a two- or three-dimensional
medium can be involved in propagation of chemical waves and reactions between
diffusing chemical species. Once reaction is initiated in a point, it spreads all over
the computing space by target and spiral waves. Such, analogues to one-to-all
broadcasting in massive-parallel systems, phenomena of wave-propagation are
employed to solve problems ranging from Voronoi diagram construction to robot
navigation [2,4]. We could not however quantize information (e.g. assign logical
values to certain waves) or implement one-to-one transmission in fully reactive
media.

Till quite recently the only way to direct and quantize information in a chem-
ical medium was to geometrically constrain the medium. Thus, only reactive or
excitable channels are made, along which wave travel. The waves collide with
other waves at the junctions between the channels, and implement certain logical
gates in result of the collision, see overview in Chapter 1 of e.g. [4].

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Adamatzky

(a) (b)

(c) (d)

Fig. 1. Examples of localized propagations in real-world systems: (a) localized waves of
combustion, (b) fragment of wave front of lichen colony, (b) propagating plasmodium,
(c) wave-fragment in sub-excitable Belousov-Zhabotinsky system

Using sub-excitable media is yet another way of quantizing information. In
sub-excitable media a local disturbance leads to generation of mobile localization,
wave-fragment which travels for a reasonably long distance without changing its
shape [36]. Presence of a wave-fragment in a given domain of space signifies log-
ical truth, absence of the fragment logical falsity. A full power of collision-based
computing can be applied then [3]. Such mobile localization are typical nat-
ural phenomena occurring in situations when system lacks resources to realize
in full its development potential (Fig.1), e.g. experience deficiency of combus-
tive material (Fig.1a), illumination (Fig.1b), nutrients in substate (Fig.1c), and
excitability (Fig.1d).

Also there is a range of problems, where chemical processor could not cope
without external support. Shortest path is one of such problems. One can use
excitable medium to outline a set of all collision-free paths in a space with ob-
stacles [4], but to select and visualize the shortest path amongst all possible
one needs to use external cellular-automaton processor, or conceptually supply



Encapsulating Reaction-Diffusion Computers 3

excitable chemical medium with some kind of field of local pointers [4]. Ex-
perimental setups, e.g. [39] which claim to directly compute a shortest path
in chemical media are indeed employing external computing resources to store
time-lapsed snapshots of propagating wave-fronts and to calculate intersection of
wave-fronts. Such usage of external resources dramatically reduce fundamental
values of the computing with propagating patterns. This is caused mainly by
uniformity of spreading wave-fronts, their inability to sharply select directions
toward locations of data points, and also because excitable systems usually do
not form stationary structures or standing waves.

Ideally, we would prefer to combine advantages of ‘free space’1 computing in
fully reactive media with precision and simplicity of logical representation of
geometrically constrained media. This can be done by encapsulating reaction-
diffusion system in an elastic membrane.

There is a real-world system which strongly resembles encapsulated reaction-
diffusion system. P. Polycephalum is a single cell with many nucleus which be-
have like amoeba, or even young neuroblast and this is why it play so perfectly
role of computing substrate for our algorithm of growing spanning tree. In its
main vegetative phase, called plasmodium, slime mold actively searches for nutri-
ents. When next source of food is located plasmodium forms a vein of protoplasm
between previous and current sources of food. Growing and feeding plasmodium
exhibits characteristic rythmic contractions with articulated sources. The con-
traction waves are associated with waves of potential change, and the waves
observed in plasmodium [48] are similar that found in excitable chemical sys-
tems, like Belousov-Zhabotinsky medium. The following wave phenomena were
discovered experimentally [48]: undisturbed propagation of contraction wave in-
side the cell body, collision and annihilation of contraction waves, splitting of
the waves by inhomogeneity, and formation of spiral waves of contraction. These
are closely matching dynamics of pattern propagation in in excitable reaction-
diffusion chemical systems.

The plasmodium has already proved to be a unique fruitful object to de-
sign various schemes of non-classical computation [10,11,45], including shortest
path [31,31,33] and even design of controllers for robots [46].

In the paper we highlight novel aspects of our studies in computing with
propagating localizations. Firstly, we demonstrate the spanning tree construc-
tion – the problem unsolvable in ‘classical’ reaction-diffusion computer without
help of external hardware devices – can be solved in plasmodium of Physarum
polycephalum. Secondly, we outline a refreshing approach to universality of bio-
logical substrates by constructing Physarum machine, which is an experimental
implementation of Kolmogorov-Uspensky machine.

2 Spanning Trees

In 1991 we proposed an algorithm of computing spanning tree of a finite planar set
based on formation of a neurite tree in a development of a single neuron [1]. Our
1 Thanks to Jonathan Mills for the term.



4 A. Adamatzky

(a) (b)

(c) (d)

Fig. 2. Approximating spanning tree by plasmodium: (a) data set of planar points,
(b) tree represented by protoplasmic strands/veins of the plasmodium, (c) extracted
spanning tree, (d) spanning tree of 500 points computed by simulated plasmodium

idea was to place a neuroblast somewhere on the plane amongst drops of chemical
attractants, positions of which represent points of a given planar set. Then neurite
tree starts to grow and spans the given planar set of chemo-attractantswith acyclic
graph of axonal and dendritic branches.Due to lateral circumstances experimental
implementation of the algorithm was not possible at the time of its theoretical
investigation [1]. Recent experimental developments in foraging behaviour of P.
Polycephalum [31,31,33,46,10,11,45] convinced us that our algorithm for growing
spanning tree can be implemented by living plasmodium.

The scoping experiments were designed as follows. We either covered con-
tainer’s bottom with a piece of wet filter paper and placed a piece of living
plasmodium on it, or just planted plasmodium on a bottom of bare container
and fixed wet paper on the container’s cover to keep humidity high. Oat flakes
placed at the positions of given planar points to be spanned by a tree. The
containers were stored in the dark except during periods of observation.



Encapsulating Reaction-Diffusion Computers 5

Once placed in the container and recovered the plasmodium starts to ex-
plore the surrounding space. Numerous pseudopodia emerge, frequently branch
and proceed. The plasmodium growth from its initial position by protoplasmic
pseudopodia detecting, by chemotaxis, relative locations of closest sources of
nutrients. When another source of nutrients, element of the given planar set, is
reached the relevant part of the plasmodium reshapes and shrinks to a protoplas-
mic strand, or a tube. This tube connects initial and newly acquired sites. This
protoplasmic strand represents an edge of the computed spanning tree. Planar
points distributed in a Petri dish are usually spanned by a protoplasmic vein
tree in 1-3 days, depending on diameter of the planar set, substrate and other
conditions.

Let us have a closer look at the set of 16 points (Fig. 2a) to be spanned.
We represented the set by a positions of oat flakes (source of nutrients), placed
flakes on the moistened filter paper, placed a piece of plasmodium at one of the
flakes. In two days plasmodium spanned set of flakes. Edges of the tree are visi-
ble as dark protoplasmic strands, connecting dark irregular shapes of oat flakes
(Fig. 2b). Manually enhances picture of the spanning tree is shown in Fig. 2c.
Tree computed by plasmodium in our experiments satisfactory match trees com-
puted by clasical techniques, e.g. by Jaromczyk-Supowit method [24,40], see [8].
Even when represented in simulation, the algorithm works pretty well on large
data sets (Fig. 2d).

3 Phyrasum Machines

We demonstrate that plasmodium of Physarum polycephalum is an ideal biolog-
ical sibstrate for implementation of Kolmogorov-Uspensky machines [7].

Kolmogorov-Uspensky machine (KUM) [28,29] is defined on a colored/labeled
undirected graph with bounded degrees of nodes and bounded number of col-
ors/labels. KUM operates, modify their storage, as follows. Select an active
node in the storage graph. Specify local active zone, the node’s neighborhood.
Modify the active zone: add new node with the pair of edges, connecting the
new node with the active node; delete a node with the pair of incident edges;
add/delete edge between the nodes. A program for KUM specifies how to re-
place neighborhood of active node with new neighborhood, depending on labels
of edges connected to the active node and labels of the nodes in proximity of
the active node [14]. All previous and modern models of real-world computa-
tion are heirs of KUM: Knuth’s linking automata [27], Tarjan’s Reference Ma-
chines [41], Schönhage’s storage modification machines [34,35]. When restrictions
on bounded in- and out-degrees of the machine’s storage graph are lifted, the
machine becomes Random Access Machine.

Functions computable on Turing machines (TM) are computed in on KUM,
and any sequential device are simulated by KUM [23]. KUM can simulate TM
in real time, but not vice verse [22]. KUM’s topology is much more flexible than
that of TM, and KUM is stronger then any ‘tree-machine’ [38].



6 A. Adamatzky

In 1988 Gurevich [23] suggested that an edge of KUM is not only informa-
tional but also physical entity and reflects physical proximity of the nodes (thus
e.g. even in three-dimensional space number of neighbors of each node is polyno-
mially bounded). What would be the best natural implementation of KUM? A
potential candidate should be capable for growing, unfolding, graph-like storage
structure, dynamically manipulating nodes and edges, and should have a wide
range of functioning parameters. Vegetative stage, plasmodium, of a true slime
mold Physarum polycephalum satisfies all these requirements.

The scoping experiments were designed as follows. We either covered con-
tainer’s bottom with a piece of wet filter paper and placed a piece of living
plasmodium2 on it, or just planted plasmodium on a bottom of a bare con-
tainer and fixed wet paper on the container’s cover to keep humidity high. Oat
flakes were distributed in the container to supply nutrients and represent part,
or data-nodes, of Physarum machine. The containers were stored in the dark
except during periods of observation. To color oat flakes, where required, we
used SuperCook Food Colorings3: blue (colors E133, E122), yellow (E102, E110,
E124), red (E110, E122), and green (E102, E142). Flakes were saturated with
the colorings, then dried.

Nodes: Physarum machine has two types of nodes: stationary nodes, presented
by sources of nutrients (oat flakes), and dynamic nodes, sites where two or more
protoplasmic veins originate (Fig. 3). At the beginning of computation, station-
ary nodes are distributed in the computational space, and plasmodium is placed
at one point of the space. Starting in the initial conditions the plasmodium
exhibits foraging behavior, and occupies stationary nodes (Fig. 3).

Edges: An edge of Physarum machine is a strand, or vein, of protoplasm con-
necting stationary and/or dynamic nodes. KUM machine is an undirected graph,
i.e. if nodes x and y are connected then they are connected by two edges (xy)
and (yx). In Physarum machine this is implemented by a single edge but with
periodically reversing flow of protoplasm [25,30].

Data, results and halting: Program and data are represented by a spatial
configuration of stationary nodes. Result of the computation over stationary
data-node is presented by configuration of dynamics nodes and edges. The initial
state of a Physarum machines, includes part of input string (the part which
represents position of plasmodium relatively to stationary nodes), empty output
string, current instruction in the program, and storage structure consists of one
isolated node. That is the whole graph structure developed by plasmodium is the
result of its computation, “if S is a terminal state, then the connected component
of the initial vertex is considered to be the “solution”” [29]. Physarum machine
halts when all data-nodes are utilized.

Active zone: In KUM storage graph must have some active node. This is an
inbuilt feature of Physarum machine. When plasmodium resides on a substrate

2 Thanks to Prof. Soichiro Tsuda for providing me with P. polycephalum culture.
3 www.supercook.co.uk

www.supercook.co.uk


Encapsulating Reaction-Diffusion Computers 7

(a) (b)

(c) (d)

Fig. 3. An example of computational process in Physarum machine. Photographs (a)–
(d) are taken with time lapse circa 24 hours.

with poor or no nutrients, then just one or few nodes generate actively spreading
protoplasmic waves. In these cases the protoplasm spreads as mobile localizations
similarly to wave-fragments in sub-excitable Belousov-Zhabotinsky medium [36].
An example of single active node, which is just started to develop its active
zone, is shown in (Fig. 4). At every step of computation in KUM there is an
active node and some active zone, usually nodes neighboring to active node.
The active zone has limited complexity, in a sense that all elements of the zone
are connected by some chain of edges to the initial node. In general, size of
active zone may vary depending on computational task. In Physarum machine
an active node is a trigger of contraction/excitation waves, which spread all over
the plasmodium tree and cause pseudopodia to propagate, shape to change and
even protoplasmic veins to annihilate. Active zone is comprised of stationary or
dynamic nodes connected to active node with veins of protoplasm.

Bounded connectivity: In contrast to Schönhage machine KUM has bounded
in- and out-degree of the storage graph. Graphs developed by Physarum are
predominantly planar graphs. Moreover, if we put a piece of vein of protoplasm
on top of another vein of protoplasm, the veins fuse [37]. Usually, not more



8 A. Adamatzky

Fig. 4. Basic operations: (a) single active node is generating active zone at the begin-
ning of computation, (b) addressing of green-coloured data-node, (c) and (d) imple-
mentation of add node, add edge, remove edge operations

then three protoplasmic strands join each other in one given point of space. It
is reported that average degree of minimum spanning tree is around 1.99, and
of relative neighborhood graph around 2.6 [17]. Graphs produced by standard
procedures for generating combinatorial random planar graphs show a limited
growth of average degree with number of nodes or edges, the degree stays around
4 when number of edges increase from 100 to 4000 [9]. We could assume that
average degree of storage graph in Physarum machines is a bit higher then degree
of spanning trees but less then degree of random planar graphs.

Addressing and labeling: Every node of KUM must be uniquely addressable
and nodes and edges labeled [29]. There is no direct implementation of such ad-
dressing in Physarum machine. With stationary nodes this can be implemented
either by coloring the nodes, or by tuning humidity of the oat flakes. Coloring
the stationary nodes could be another solution. An example of experimental
implementation of addressing is shown in Fig. 4b.

Basic operations: A possible set of instructions for Physarum machine could
be as follows. Common instruction would include input, output, go, halt,
and internal instructions: new, set, if [19]. At present state of experimental
implementation we assume that input is done via distribution of sources of



Encapsulating Reaction-Diffusion Computers 9

nutrients, while output is recorded optically. Instruction set causes pointers
redirection, and can be realized by placing fresh source of nutrients in the ex-
perimental container, preferably on top of one of the old sources of nutrients.
When new node is created all pointers from the old node point to the new node.
Let us look at the experimental implementation of core instructions.
add node: To add a stationary node b to node a’s neighborhood, plasmodium
must propagate from a to b, and form a protoplasmic vein representing edge
(ab). To form a dynamic node, propagating pseudopodia must branch into two
or more pseudopodia, and the site of branching will represent newly formed
node.
remove node: To remove stationary node from Physarum machine, plasmod-
ium leaves the node. Annihilating protoplasmic strands forming a dynamic node
at their intersection, remove the dynamic node.
add edge: To add an edge to a neighborhood, active node generates propagating
processes which establish a protoplasm vein with one or more neighboring nodes.
remove edge: When protoplasmic vein annihilates, e.g. depending on global
state or when source of nutrients exhausted, edge represented by the vein is re-
moved from Physarum machine (Fig. 4cd). The following sequence of operations
is demonstrated in Fig. 4cd: node 3 is added to the structure by removing edge
(12) and forming two new edges (13) and (23).

References

1. Adamatzky, A.: Neural algorithm for constructing minimal spanning tree. Neural
Network World 6, 335–339 (1991)

2. Adamatzky, A.: Computing in non-linear media and automata collectives. IoP,
Bristol (2001)

3. Adamatzky, A. (ed.): Collision-Based Computing. Springer, Heidelberg (2003)
4. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers.

Elsevier, Amsterdam (2005)
5. Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Comput-

ers. Luniver Press (2006)
6. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute

spanning tree (submitted)
7. Adamatzky, A.: Physarum machine: implementation of Kolmogorov-Uspensky ma-

chine in biological substrate. Parallel Processing Letters (in press, 2007)
8. Adamatzky, A.: Growing spanning trees in plasmodium machines, Kybernetes (in

press, 2007)
9. Alber, J., Dornm, F., Niedermeier, R.: Experiments on Optimally Solving NP-

complete Problems on Planar Graphs. Manuscript (2001),
http://www.ii.uib.no/~frederic/ADN01.ps

10. Aono, M., Gunji, Y.-P.: Resolution of infinite-loop in hyperincursive and nonlocal
cellular automata: Introduction to slime mold computing. In: Computing Antici-
aptory Systems. AIP Conference Proceedings, vol. 718, pp. 177–187 (2001)

11. Aono, M., Gunji, Y.-P.: Material implementation of hyper-incursive field on slime
mold computer. In: Computing Anticiaptory Systems. AIP Conference Proceed-
ings, vol. 718, pp. 188–203 (2004)

http://www.ii.uib.no/~frederic/ADN01.ps


10 A. Adamatzky

12. Bardzin’s, J.M.: On universality problems in theory of growing automata. Doklady
Akademii Nauk SSSR 157, 542–545 (1964)

13. Barzdin’, J.M., Kalnins, J.: A universal automaton with variable structure. Auto-
matic Control and Computing Sciences 8, 6–12 (1974)

14. Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bull. Europ.
Assoc.TCS 81, 195–225 (2003)

15. van Emde Boas, P.: Space measures for storage modification machines. Information
Process. Lett. 30, 103–110 (1989)

16. Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S.: UC 2006.
LNCS, vol. 4135. Springer, Heidelberg (2006)

17. Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenovic, I.: Localized LMST and
RNG based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc
Networks 3, 1–16 (2005)

18. Cloteaux, B., Rajan, D.: Some separation results between classes of pointer al-
gorithms. In: DCFS ’06: Proceedings of the Eighth Workshop on Descriptional
Complexity of Formal Systems, pp. 232–240 (2006)

19. Dexter, S., Doyle, P., Gurevich, Y.: Gurevich abstract state machines and
Schönhage storage modification machines. J. Universal Computer Science 3, 279–
303 (1997)

20. Dijkstra, E.A.: A note on two problems in connection with graphs. Numer. Math. 1,
269–271 (1959)

21. Gacs, P., Leving, L.A.: Casual nets or what is a deterministic computation, STAN-
CS-80-768 (1980)

22. Grigoriev, D.: Kolmogorov algorithms are stronger than Turing machines. Notes
of Scientific Seminars of LOMI (in Russian) 60, 29–37 (1976) (English translation
in J. Soviet Math. 14(5) 1445–1450 (1980))

23. Gurevich, Y.: On Kolmogorov machines and related issues. Bull. EATCS 35, 71–82
(1988)

24. Jaromczyk, J.W., Kowaluk, M.: A note on relative neighborhood graphs. In: Proc.
3rd Ann. Symp. Computational Geometry, pp. 233–241 (1987)

25. Kamiya, N.: The protoplasmic flow in the myxomycete plasmodium as revealed by
a volumetric analysis. Protoplasma 39, 3 (1950)

26. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In:
Toussaint, G.T. (ed.) Computational Geometry, pp. 217–248. North-Holland, Am-
sterdam (1985)

27. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1.
Addison-Wesley, Reading, Mass (1968)

28. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176
(1953)

29. Kolmogorov, A.N., Uspensky, V.A.: On the definition of an algorithm. Uspekhi
Mat. Nauk (in Russian), 13, 3–28 (1958) (English translation: ASM Translations
21(2), 217–245 (1963))

30. Nakagakia, T., Yamada, H., Ueda, T.: Interaction between cell shape and con-
traction pattern in the Physarum plasmodium. Biophysical Chemistry 84, 195–204
(2000)

31. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Research in Mi-
crobiology 152, 767–770 (2001)

32. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Na-
ture 407, 470 (2000)

33. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an
amoeboid organism. Biophysical Chemistry 92, 47–52 (2001)



Encapsulating Reaction-Diffusion Computers 11

34. Schönhage, A.: Real-time simulation of multi-dimensional Turing machines by stor-
age modification machines. Project MAC Technical Memorandum, vol. 37. MIT,
Cambridge (1973)

35. Schönhage, A.: Storage modification machines. SIAM J. Comp. 9, 490–508 (1980)
36. Sedina-Nadal, I., Mihaliuk, E., Wang, J., Perez-Munuzuri, V., Showalter, K.: Wave

propagation in subexcitable media with periodically modulated excitability. Phys.
Rev. Lett. 86, 1646–1649 (2001)

37. Shirakawa, T.: Private communication (February 2007)
38. Shvachko, K.V.: Different modifications of pointer machines and their computa-

tional power. In: Tarlecki, A. (ed.) Mathematical Foundations of Computer Science
1991. LNCS, vol. 520, pp. 426–435. Springer, Heidelberg (1991)

39. Steinbock, O., Tóth, A., Showalter, K.: Navigating complex labyrinths: optimal
paths from chemical waves. Science 267, 868–871 (1995)

40. Supowit, K.J.: The relative neighbourhood graph, with application to minimum
spanning tree. J. ACM 30, 428–448 (1988)

41. Tarjan, R.E.: Reference machines require non-linear time to maintain disjoint sets,
STAN-CS-77-603 (March 1977)

42. Tero, A., Kobayashi, R., Nakagaki, T.: A coupled-oscillator model with a conserva-
tion law for the rhythmic amoeboid movements of plasmodial slime molds. Physica
D 205, 125–135 (2005)

43. Teuscher, C., Adamatzky, A. (eds.): Unconventional Computing 2005: From Cel-
lular Automata to Wetware. Luniver Press (2005)

44. Tirosh, R., Oplatka, A., Chet, I.: Motility in a “cell sap” of the slime mold
Physarum Polycephalum. FEBS Letters 34, 40–42 (1973)

45. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum-computing.
BioSystems 73, 45–55 (2004)

46. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot Control: From Silicon Circuitry to
Cells. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS,
vol. 3853, pp. 20–32. Springer, Heidelberg (2006)

47. Uspensky, V.A.: Kolmogorov and mathematical logic. The Journal of Symbolic
Logic 57, 385–412 (1992)

48. Yamada, H., Nakagaki, T., Baker, R.E., Maini, P.K.: Dispersion relation in oscil-
latory reaction-diffusion systems with self-consistent flow in true slime mold. J.
Math. Biol. (2007)



On the Computational Capabilities of Several

Models

Olivier Bournez and Emmanuel Hainry

LORIA/INRIA, 615 Rue du Jardin Botanique
54602 Villers-Lès-Nancy, France

{Olivier.Bournez,Emmanuel.Hainry}@loria.fr

Abstract. We review some results about the computational power of
several computational models. Considered models have in common to be
related to continuous dynamical systems.

1 Dynamical Systems and Polynomial Cauchy Problems

A polynomial Cauchy problem is a Cauchy problem of type{
x′ = p(x, t)
x(0) = x0

where p(x, t) is a vector of polynomials, and x0 is some initial condition.
The class of functions that are solution of a polynomial Cauchy problem turns

out to be a very robust class [14]. It contains almost all natural mathematical
functions. It is closed under addition, subtraction, multiplication, division, com-
position, differentiation, and compositional inverse [14].

Actually, every continuous time dynamical system x′ = f(x, t) where each
component of f is defined as a composition of functions in the class and poly-
nomials can be shown equivalent to a (possibly higher dimensional) polynomial
Cauchy problem [14]. This implies that almost all continuous time dynamical
systems considered in books like [17], or [22] can be turned in the form of (pos-
sibly higher dimensional) polynomial Cauchy problems.

For example, consider the dynamic of a pendulum x′′ +p2 sin(x) = 0. Because
of the sin function, this is not directly a polynomial ordinary differential equa-
tion. However, define y = x′, z = sin(x), u = cos(x). A simple computation of
derivatives show that we must have⎧⎪⎪⎨

⎪⎪⎩

x′ = y
y′ = −p2z
z′ = yu
u′ = −yz

,

which is a polynomial ordinary differential equation.
This class of dynamical systems becomes even more interesting if one realizes

that it captures all what can be computed by some models of continuous time
machines, such as the General Purpose Analog Computer (GPAC) of Shannon
[26].

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 12–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Computational Capabilities of Several Models 13

2 The GPAC

The GPACs was introduced in 1941 by Shannon [26] as a mathematical model
of an analog device: the Differential Analyzer [11]. The Differential Analyzer was
used from the 1930s to the early 60s to solve numerical problems. For example,
differential equations were used to solve ballistics problems. These devices were
first built with mechanical components and later evolved to electronic versions.

A GPAC may be seen as a circuit built of interconnected black boxes, whose
behavior is given by Figure 1, where inputs are functions of an independent
variable called the time (in an electronic Differential Analyzer, inputs usually
correspond to electronic voltages). These black boxes add or multiply two inputs,
generate a constant, or solve a particular kind of Initial Value Problem defined
with an ordinary differential equation.

k u
v

Constant

u
v u+v

Addition

u
v u*vxu
v

Multiplication

u
v
u
v

Intégration

w = +  udv

+

Fig. 1. The basic units of a GPAC (the output w of an integration operator satisfies
w′(t) = u(t)v′(t), w(t0) = α for some initial condition α)

The model was further refined in [25,20,15,16]. For the more robust class of
GPACs defined in [16], the following property holds:

Theorem 1 (GPAC Generated Functions [16]). A scalar function f : R →
R is generated by a GPAC iff it is a component of the (necessarily unique)
solution of a polynomial Cauchy problem. A function f : R → Rk is generated
by a GPAC iff all of its components are.

From previous closure properties, GPAC can be considered as a faithful model
of (today’s) analog electronics [9]. Figure 3 shows how to realize an integration
with an ideal operational amplifier, a resistor and a condenser.

3 Planar Mechanisms

The power of planar mechanisms made of rigid bars linked by their end by rivets
attracted much attention in England and in France in the late 19th century, with a
new birth of interest in Russia at the end of the forties: see for example [6], [27]. The



14 O. Bournez and E. Hainry

-1

y1

y2
y3

t

Fig. 2. Generating cos and sin by a GPAC. In form of a system of equations, we have
y′
1 = y3, y′

2 = y1, y′
3 = −y1. It follows that y1 = cos, y2 = sin, y3 = − sin, if y1(0) = 1,

y2(0) = y3(0) = 0.

-

R

C

V
U +

Fig. 3. Realizing an integration with an ideal operational amplifier: one has V (t) =
−1/RC

� t

0 U(t)dt

pantograph, which allows to realize dilatations is well-known. The Peaucellier’s
mechanism allows transforming a linear motion into a circular motion.

More generally, this is natural to ask what is the power of such devices. This is
given by the following very nice result (see for e.g. [6], [27]) attributed to Kempe
[19]: this corresponds to semi-algebraic sets.

Theorem 2 (Completeness of planar mechanism)

– For any non-empty semi-algebraic set S, there exists a mechanism with n
points that move on linear segments, but that are free to move on these
segments, and that forces the relation (x1, . . . , xn) ∈ S, where xi are the
distances on the linear segments.

– Conversely, the domain of evolution of any finite planar mechanism is semi-
algebraic.

4 Distributed Computations

4.1 Populations Protocols

We present the recent population protocol model of [2], proposed as a model for
passively mobile sensor networks.



On the Computational Capabilities of Several Models 15

a

b

a'
b'

Fig. 4. Peaucellier’s mechanism. The circular motion of a is transformed into a linear
motion of b.

In this model, a protocol consists in giving a finite set of internal states Q =
{1, 2, . . . , k}, and transition rules given by δ : Q × Q → Q × Q. For δ(p, q) =
(p′, q′), write δ1(p, q) = p′, δ2(p, q) = q′.

A configuration of a system at a given time is given by the internal states of
each of the n individuals.

We suppose that the individuals are completely indiscernible. It follows that
the state of a system can be described by the number ni of individuals in state
i, for 1 ≤ i ≤ k, better than by the state of each individual.

At each discrete round, a unique individual i is put in relation with some other
individual j: at the end of this meeting, the individual i is in state δ1(qi, qj), and
individual j is in state δ2(qi, qj).

We suppose that we cannot control the interactions, and that there is a notion
of fairness: if in a configuration C one can go to configuration C′ in one step
(denoted by C → C′) then in any derivation C0C1 · · · , with Ci → Ci+1 for all i,
if C appears infinitely often, then C′ also.

One wants to consider population protocols as predicate recognizers ψ : Nm →
{0, 1}.

To do so, fix a subset Q+ ⊂ Q, and say that an tuple (n1, . . . , nm) ∈ Nm, for
m ≤ k, is accepted (respectively rejected) by the protocol, if starting from any
configuration with ni individuals in state i, eventually all the individuals will be
in some internal state that belongs to Q+ (resp. its complement), and this stays
true at any time afterward.

One says that the protocol recognizes ψ : Nm → {0, 1} if for all tuple
(n1, . . . , nm), it is accepted when ψ(n1, . . . , nm) = 1 and it is rejected when
ψ(n1, . . . , nm) = 0.



16 O. Bournez and E. Hainry

We have the following very nice result (recall that the sets that are definable
in Presburger arithmetic coincide with the semi-linear sets over the integers).

Theorem 3 (Power of Population Protocols [4])

– Any predicate ψ : Nm → {0, 1} that can be defined in Presburger arithmetic
can be computed by a population protocol.

– Conversely, any predicate ψ : Nm → {0, 1} that is computed by a population
protocol can be defined in Presburger arithmetic.

For example, since this is definable in Presburger arithmetic, there is a protocol
to decide if more than 5% of agents are in internal state 1.

This theorems shows, if needed, that these models are really different from
classical models, such as cellular automata, or Turing machines.

Refer to [1], [5], [3] for more results about this model, and some variants.

4.2 Another Model

If the number of individuals is high, this is natural not to talk about numbers,
but about proportions or statistics.

For example, consider the following protocol: we have a population of n agents.
Each agent is either in the state +, or in state −. Hence, a configuration corre-
sponds to a point of S = {+,−}n.

We suppose that time is discrete. At each discrete time (round), all (or a fixed
fraction of) the agents interact in pairs, according to the following rules:

++ → 1/2+, 1/2−
+− → +
−+ → +
−− → 1/2+, 1/2−

One must interpret the second rule in the following way: if an individual of
type + interacts with an individual of type −, then it becomes of type +. One
must interpret the first rule in the following way: if an individual is of type +
interacts with an individual of type +, he becomes of type + with probability
1/2, and of type − with probability 1/2.

We suppose that the pairings are chosen at random uniformly.
Experimentally, the proportion of + in the population converges towards√
2/2, when the number of individuals increases. This could be expected, since,

if p denotes the proportion of +, with probability p an individual meets a +, and
1 − p a −. Now, the first and fourth rule destroy in mean 1/2+ each, whereas
the second and third rules create one + each. By doing the sum, one can write
that in expectation, the number of + that are created at each round is

1/2p2 + 2p(1− p) + 1/2(1− p)2 = 1/2 + p− p2.

Now, at equilibrium, there must be conservation, and so it must be equal to p.
Hence p2 = 1/2, i.e. p =

√
2/2.



On the Computational Capabilities of Several Models 17

The previous system converges towards
√

2/2, and hence can be considered
as computing this value. Which numbers are computable by such protocols? Of
course, by assuming using pairwise pairing, rational probabilities, and a finite
number of internal states for each agent.

5 Computing with Distributed Games

More generally, in previous two models, rules of interactions can be considered as
games between participants. When the number of individuals n becomes high,
models of dynamics of population, and of dynamics in game theory become
natural and relevant. We review some of them.

5.1 Game Theory Models

To introduce some dynamism in game theory, there are two main approaches.
The first consists in repeating games. The second in using models from evolu-
tionary game theory.

Let’s first present the simplest concepts from Game Theory [24]. We focus on
non-cooperative games, with complete information, in extensive form.

The simplest game is a two player games, called I and II, with a finite set of
options, called pure strategies, Strat(I) and Strat(II). Denote by ai,j (respec-
tively: bi,j) the score (or if it is a random variable its expected value) for player I
(resp. II) when I uses strategy i ∈ Strat(I) and II strategy j ∈ Strat(II). The
scores are given by n×m matrices A and B, where n and m are the cardinality
of Strat(I) and Strat(II).

Example 1 (Prisonner dilemma). The case where A and B are the following
matrices

A =
(

3 0
5 1

)
, B =

(
3 5
0 1

)

is called the game of prisoners, or prisoner dilemma. We denote by C (for coop-
eration) the first pure strategy, and by D (for defection) the second pure strategy
of each player.

A mixed strategy of player I, which consists in using i ∈ Strat(I) with probability
xi, will be denoted by vector x = (x1, . . . , xn)T . One must have

∑n
i=1 xi = 1, i.e.

x ∈ Sn, where Sn is the unit simplex of Rn, generated by the vectors ei of the
unit standard basis of Rn. In a similar way, a mixed strategy for II corresponds
to y = (y1, . . . , ym)T with y ∈ Sm. If player II uses mixed strategy x, and player
II mixed strategy y, then the first has mean score xT Ay and the second xT By.
A strategy x ∈ Sn is said to be a best response to strategy y ∈ Sm, denoted by
x ∈ BR(y) if

zT Ay ≤ xT Ay (1)

for all strategy z ∈ Sn. A pair (x,y) is a mixed Nash equilibrium if x ∈ BR(y)
and y ∈ BR(x). Nash theorem [23] claims, by a fixed point argument, that such
an equilibrium always exists. However, it is not necessarily unique.



18 O. Bournez and E. Hainry

5.2 Repeated Games

Repeating k times a game is equivalent to extend the space of choices into
Strat(I)k and Strat(II)k: player I (respectively II) chooses its action x(t) ∈
Strat(I), (resp. y(t) ∈ Strat(II)) at time t for t = 1, 2, · · · , k. Hence, this is
equivalent to a two-players game with respectively nk and mk choices for players.

In practice, player I (respectively II) has to solve the following problem at
each time (round) t: given the history of the game up to now, that is to say
Xt−1 = x(1), · · · ,x(t − 1) and Yt−1 = y(1), · · · ,y(t − 1) what should I play at
time t? That is to say how to choose x(t) ∈ Strat(I)? (resp. y(t) ∈ Strat(II)?).

This is natural to suppose that the answer of each of the players is given
by some behavior rules: x(t) = f(Xt−1, Yt−1), y(t) = g(Xt−1, Yt−1) for some
functions f and g. For example, the question of the best behavior rule to use
for the prisoner lemma gave birth to an important literature, in particular, after
the book [7].

5.3 Games on a Graph

An example of behavior for the prisoner lemma is PAV LOV .

Example 2 ( PAV LOV ). The PAV LOV behavior consists, in the iterated pris-
oner lemma, in fixing a threshold, say 3, and at time t, replaying the previous
pure action if the last score is above this threshold, and changing the action
otherwise.

Concretely, if we denote + for C, and − for D, one checks easily that this
corresponds to rules ⎧⎪⎪⎨

⎪⎪⎩

++ → ++
+− → −−
−+ → −−
−− → ++,

(2)

where the left hand side of each rule denotes x(t−1)y(t−1), and the right hand
side the corresponding result for x(t)y(t).

From a set of such rules, this is easy to obtain a distributed dynamic. For exam-
ple, let’s follow [12]: Suppose that we have a connected graph G = (V, E), with
N vertices. The vertices correspond to players. An instantaneous configuration
of the system is given by an element of {+,−}N , that is to say by the state +
of − of each vertex. Hence, there are 2N configurations.

At each round t, one chooses randomly and uniformly one edge (i, j) of the
graph. At this moment, players i and j play the prisoner dilemma with the
PAV LOV behavior, that is to say the rules of the equation 2 are applied.

What is the final state reached by the system?
The underlying model is a huge Markov chain with 2N states. The state

E∗ = {+}N is absorbing. If the graph G does not have any isolated vertex, this
is the unique absorbing state, and there exists a sequence of transformations that
transforms any state E into this state E∗. As a consequence, from well-known



On the Computational Capabilities of Several Models 19

classical results for Markov chains, whatever the initial configuration is, with
probability 1, the system will be in state E∗ [10]. The system is self-stabilizing.
Several results about the convergence time towards this stable state can be found
in [12], and [13], for rings, and complete graphs.

What is interesting in this example is that it shows how to go from a game, and
behaviors to a distributed dynamic on a graph. Clearly this is easy to associate
a similar dynamic to any1 Markovian behavior on a symmetric game.

5.4 Myopic Dynamic

In the general case, to every 2-players repeated game, one can associate the
myopic behavior. It consists in the fact that each player makes systematically
the hypothesis that the opposite player will replay at time t the same thing as
he played at time t − 1. As a consequence, this behavior consists in choosing
systematically at time t the (or a) best response to the action of the opposite
player at time t− 1:

f(Xt−1, Yt−1) ∈ BR(y(t− 1)).

Take, like [8], the example of the Cournot duopoly game. The Cournot duopoly
game is a well-known economical model of the competition of two producers of a
same good. In this model, the production of a unit article of this good costs c. One
makes the hypothesis that the total demand is of the form q = q1 + q2 = M − p,
where p is the sold price, and q1 and q2 the number of produced articles by each
of the firms.

The problem of firm I (respectively II) is to fix q1 (resp. q2) in order to
maximize its profit (p−c)q1 (resp. (p−c)q2). One shows easily (see [8]), that the
best response to q2 is to choose q1 = 1/2(M− c− q2), and that the best response
to q1 is to choose q2 = 1/2(M − c − q1), so that the unique Nash equilibrium
corresponds to the intersection of the two lines defined by these equations.

The myopic dynamic for the two players then gives on this game
{

q1(t) = 1/2(M − c− q2(t− 1))
q2(t) = 1/2(M − c− q1(t− 1)).

This is easy to show that whatever the initial point is, such a dynamic con-
verges towards the Nash equilibrium. The collective dynamic converges towards
the rational equilibrium. Unfortunately, as shown in [8], this is not always the
case.

5.5 Fictious Player Dynamic

The myopic behavior can be considered as very too basic. A more reasonable
behavior seems to be the following: to predict what will play the opposite player
at time t, let’s use the statistic of what he did at time 1, 2, · · · , t − 1: if he
1 But not necessarily Pavlovian. Actually, the behavior PAV LOV , as described here,

is not ambiguous only on 2 by 2 matrices.



20 O. Bournez and E. Hainry

played action i ni times, let’s estimate that he will play action i with probability
xi = ni/(t− 1) at time t. This is what is called the fictious player dynamic.

To simplify things, let’s follow [8], and suppose that n = m = 2, and that the
matrices are given by

A =
(

0 3
2 1

)
, B =

(
2 0
1 3

)
.

If at time 1, 2, · · · , t − 1, player 2 used ni times action number i, player I
will estimate that player II will play at time t action i with probability yi(t) =
ni/(t − 1). Player II will evaluate probability xi(t) that player I play action i
in a symmetric way.

To study the dynamic, as this is shown in [8], one just needs to go from
discrete time to continuous time: a simple analysis (see [8]) shows that as long
as (x2(t), y2(t)) stays in zone A of the left part of Figure 5, player I will use its
second pure strategy, and player II its first pure strategy as a best response to
what he or she expects from the opposite player.

The dynamic (x2(t), y2(t)) will stay in this zone up to time t + τ for τ > 0
sufficiently small. Since we know the choice of player II between time t and time
t + τ , one can hence evaluate y2(t + τ) as

y2(t + τ) =
ty2(t)
t + τ

. (3)

This can be written as y2(t+τ)−y2(t)
τ = −y2(t).

Bet letting τ converge to 0, we obtain y′
2(t) = y2(t)

t .

In a similar way, we obtain x′
2(t) = 1−x2(t)

t .
The points that satisfy these two equations are on a straight line that starts

from (x2(t), y2(t)) and that joins point (1, 0). A similar study on zones B,C, and
D of the left part of Figure 5 shows that the dynamic must be the one depicted

(0,0) (1,0)

(0,1) (1,1)

1/2

1/2

B

CD

A
(x2(0),y2(0))

Fig. 5. Convergence towards a mixed equilibrium



On the Computational Capabilities of Several Models 21

on the right part of Figure 5. It converges towards the mixed Nash equilibrium
of the game. Once again, the collective dynamic converges towards the rational
equilibrium. Unfortunately, once again, this is not the case for all the games:
one can easily consider games where trajectories do not converge, or with limit
cycles [8].

5.6 Evolutionary Game Theory Models

Evolutionary game theory is another way to associate dynamics to games.
Evolutionary game theory is born from the book from Maynard Smith [21].
To illustrate how, to a game, can be associated a biological dynamic, let’s take

the fictive example of a population of individuals from [8]. Binmore chooses to
call these individuals dodos.

The day of a dodo lasts a fraction τ of a year. There are n types of dodos:
the dodos that play action 1, the dodos that play action 2, . . . , and the dodos
that play action n. Babies of a dodo of type i are always of type i.

We are interested in the proportion xi(t) of dodos that play action i. We have
of course

∑n
i=1 xi(t) = 1.

At the end of each day, the dodos fight pairwise. The outcome of a fight has
some influence on the fecundity of involved participants. One reads on a matrix
A n × n at entry ai,j the birth rate of a given dodo, if it is of type i and if he
fights again an individual of type j: his expected number of babies at next day
is given by τai,j .

How many babies a dodo of type i can expect to have at next day? The answer
is

n∑
j=1

xj(t)τai,j = (Ax)iτ.

Indeed, since the pairing for the fights on the evening between dodos are
chosen at random and uniformly among the population, in expectation its birth
rate is given by previous expression.

The number of dodos of type i in the next morning is hence

Nxi(t)(1 + (Ax)iτ).

Mortality being not a function of the type of dodos, the next day, the fraction
of dodos of type i will be given by

xi(t + τ) =
Nxi(t)(1 + (Ax)iτ)

Nx1(t)(1 + (Ax)1τ) + · · ·+ Nxn(t)(1 + (Ax)nτ)
.

Hence

xi(t + τ) =
xi(t)(1 + (Ax)iτ)

1 + xT Axτ
.

where xT Axτ can be interpreted as the expected number of birth for a dodo in
a day.



22 O. Bournez and E. Hainry

This can be rewritten as

xi(t + τ) − xi(t)
τ

= xi(t)
(Ax)i − xT Ax

1 + xT Axτ
.

By taking limit when τ goes to 0, we obtain

x′
i = xi((Ax)i − xtAx).

This is what is called replicator dynamic. Such an equation models the fact
that individuals whose score (fitness) given by matrix A is above mean score
(fitness) have tendency to reproduce, whereas those that have a score under the
mean score have tendency to disappear.

Of course the model about dodos is relatively ad hoc, but many situations
and models give rise to same dynamics: see e.g. [21].

Evolutionary game theory aims at studying the behaviors of such dynamics
in function of matrix A.

It has its own notions of equilibria, motivated by the stability of underlying
dynamical systems, such as the notion of evolutionary stable equilibrium. An
evolutionary stable equilibrium is a particular Nash equilibrium. It makes it
possible to link the notions of equilibria for the game given by A to the notions
of stability for the corresponding dynamical system.

Actually, it does not only consider replicator dynamics, but other dynamics
such as imitation dynamics, best response dynamics, and so on. . . , with in all
dynamics the idea that individuals with highest score reproduce faster than
others. Refer to [21], [28], [18] for presentations.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
computable properties of network graphs. In: Prasanna, V.K., Iyengar, S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Twenty-Third ACM Sympo-
sium on Principles of Distributed Computing, July 2004, pp. 290–299. ACM Press,
New York (2004)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, Springer, Heidelberg
(2006)

4. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Prin-
ciples of distributed computing, New York, NY, USA, pp. 292–299. ACM Press,
New York (2006)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 79–90. Springer, Heidelberg (2006)

6. Artobolevskii, I.I.: Mechanisms for the generation of plane curves. Macmillan, New
York (1964) (Translated by Wills, R.D., Johnson, W.)



On the Computational Capabilities of Several Models 23

7. Axelrod, R.M.: The Evolution of Cooperation. Basic Books (1984)
8. Binmore, K.: Jeux et Théorie des jeux. DeBoeck Université, Paris-Bruxelles (1999)

(Translated from ”Fun and Games: a text on game theory”by Bismans, F., Damaso,
E.)

9. Bournez, O.: Modéles Continus. Calculs. Algorithmique Distribuée. Habilitationá
diriger les recherches, Institut National Polytechnique de Lorraine (Décembre 7,
2006)

10. Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer, New York (2001)

11. Bush, V.: The differential analyser. Journal of the Franklin Institute 212(4), 447–
488 (1931)

12. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Istrate, G., Jerrum, M.: Convergence
of the iterated prisoner’s dilemma game. Combinatorics, Probability & Comput-
ing 11(2) (2002)

13. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. In: Guer-
raoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 201–215. Springer, Heidelberg
(2004)

14. Graça, D.: Computability with Polynomial Differential Equations. PhD thesis, In-
stituto Superior Técnico (2007)

15. Graça, D.S.: Some recent developments on Shannon’s general purpose analog com-
puter. Mathematical Logic Quarterly 50(4-5), 473–485 (2004)

16. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
Journal of Complexity 19(5), 644–664 (2003)

17. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems,
and an Introduction to Chaos. Elsevier Academic Press, Amsterdam (2003)

18. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bulletin of the American
Mathematical Society 4, 479–519 (2003)

19. Kempe, A.B.: On a general method of describing plane curves of the n–th degree
by linkwork. Proceedings of the London Mathematical Society 7, 213–216 (1876)

20. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and ana-
log computability. Proceedings of the American Mathematical Society 99(2), 367–
372 (1987)

21. Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University
Press, Cambridge (1981)

22. Murray, J.D.: Mathematical biology. I: An introduction. In: Biomathematics, 3rd
edn., vol. 17, Springer, Heidelberg (2002)

23. Nash, J.F.: Equilibrium points in n-person games. Proc. of the National Academy
of Sciences 36, 48–49 (1950)

24. Osbourne, Rubinstein: A Course in Game Theory. MIT Press, Cambridge (1994)
25. Pour-El, M.B.: Abstract computability and its relation to the general purpose

analog computer (some connections between logic, differential equations and analog
computers). Transactions of the American Mathematical Society 199, 1–28 (1974)

26. Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Math-
ematics and Physics MIT 20, 337–354 (1941)

27. Svoboda, A.: Computing Mechanisms and Linkages. McGraw Hill (1948) (Dover
reprint 1965)

28. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)



Universality, Reducibility, and Completeness

Mark Burgin

Department of Computer Science,
University of California, Los Angeles
Los Angeles, California 90095, USA

mburgin@math.ucla.edu

Abstract. Relations between such concepts as reducibility, universal-
ity, hardness, completeness, and deductibility are studied. The aim is to
build a flexible and comprehensive theoretical foundations for different
techniques and ideas used in computer science. It is demonstrated that:
concepts of universality of algorithms and classes of algorithms are based
on the construction of reduction of algorithms; concepts of hardness and
completeness of problems are based on the construction of reduction of
problems; all considered concepts of reduction, as well as deduction in
logic are kinds of reduction of abstract properties. The Church-Turing
Thesis, which states universality of the class of all Turing machines, is
considered in a mathematical setting as a theorem proved under definite
conditions.

Keywords: universal, reducibility, computability, algorithm, problem
completeness, problem hardness, computing power.

1 Introduction

Reducibility is a powerful technique of problem solving. Psychologists found
that reducibility is at the core of human comprehension. People recognize things
only when they are able to reduce them to known patterns. Although this ap-
proach works well in many situations, in cases of encountering something es-
sentially new, original, and innovative, reducibility becomes an obstacle that
hinders correct comprehension and causes serious mistakes. A notorious exam-
ple of this is the situation with the famous Church-Turing Thesis. The essence of
the Thesis is a possibility to reduce (model) any algorithm to (by) a Turing ma-
chine. Overcoming this absolute reducibility and consequent i refutation of the
Church-Turing Thesis brought researchers to the rich universe of superrecursive
algorithms [12,13].

Reducibility is often used in mathematics and computer science to solve dif-
ferent problems or to show that these problems are unsolvable. For instance, the
general formula for the solution of a cubic equation was found by reduction of
the general cubic equation to one in which the second-degree term was absent
[16]. In the theory of differential equations, the Cauchy problem for an arbitrary
linear system of differential equations is reduced to Cauchy problem for a linear
system of first order differential equations.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 24–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Universality, Reducibility, and Completeness 25

In a similar way, undecidability of the problem whether a language of a Turing
machine is finite is proved by a reduction of the halting problem for Turing
machines to this problem. By this technique, undecidability of the following
problems is also proved:

if the language of a Turing machine is empty;
if the language of a Turing machine is contains all words in a given alphabet;
if a Turing machine computes a total function.

Reduction is used to prove the very important Rice theorem [19] and its
axiomatic version [14].

Reducibility is at the core of some basic concepts in complexity theory, such
as NP-hard and NP-complete problems, K-completeness for an arbitrary class
K of algorithms and some other concepts.

At the same time, universality, universal automata and algorithms play an
important role in computer science and technology. As it is written in [4], ”A
pillar of the classical theory of computation is the existence of a universal Tur-
ing machine, a machine that can compute any (recursively, M.B.) computable
function. This theoretical construct foretold and provides a foundation for the
modern general-purpose computer.” Any universal Turing machine determines
what is recursively computable, acceptable or decidable. In addition, the whole
theory of Kolmogorov complexity is based on the concept of universal Turing
machine. Moreover, computer technology also owes a lot to universal Turing
machines. The structure of a universal Turing machine served as a model for
the famous von Neumann architecture for a general-purpose computer. This
architecture has determined for decades how computers have been built. Now
an important property of programming languages is Turing completeness, which
means a possibility to write a program that simulates a universal Turing machine
in this language. Parallel to this, the Universality Axiom AU, which demands
existence of a universal algorithm, is one of the basic axioms in the axiomatic
theory of algorithms [14].

In this paper, we study relations between such concepts as reducibility, uni-
versality, hardness, completeness, and deductibility. In Section 2, going after
Introduction, we introduce several types of reducibility for algorithms and au-
tomata and demonstrate how reducibility determines universality of algorithms
and automata. In Section 3, our main concern are universal classes of algorithms
and automata in the context of the Church-Turing Thesis. The topic of Section 4
is completeness and hardness of computational problems. Section 5 explicates re-
lations between those kinds of reducibilities that are studied in previous sections
and reduction of abstract properties.

2 Universality of Algorithms and Reducibility

An algorithm provides a recipe to solve a given problem. For simplicity, it is
possible to assume that an algorithm consists of a finite number of rules, each
having well defined and realizable meaning. Often algorithms that have states,
such as Turing machines or finite automata, are considered.



26 M. Burgin

Not to be limited by a definite model of algorithms, in this section, we treat
algorithms in the context of the axiomatic theory of algorithms [14].

Let K be a class of automata/algorithms that take inputs from a set X and
give outputs that belong to a set Y . There are two principal axioms that char-
acterize algorithms, in general, and deterministic algorithms, in particular.

Computation Postulate (PCM). Any algorithm A from K determines a
binary relation rA in the direct product X × Y of all its inputs XA and all its
outputs YA.

We remind that the set XA is called the domain of A and the set YA is called
the codomain of A. If x ∈ X and A is an algorithm from K, then A(x) denotes
the result of application of A to x.

However, in many cases, it is preferable to have such algorithms that for each
input give only one result. These algorithms are called deterministic and are
characterized by the following axiom.

Deterministic Computation Postulate (PDC). Any algorithm A from K
determines a function fA from X into Y .

Informally it means that given some input, A always produces the same result.

Remark 1. Functions may be partial and total. The latter are defined for all
elements of X .

Examples of classes that compute relation and not a function are: non-
deterministic computing finite automata, algorithms for multiple computations
[8], and interactive algorithms [18].

We remind that a relation r in the direct product X ×Y is called computable
in K if r = rA for some algorithm A from K. In particular, a function f from
X into Y is called computable in K if f = fA for some algorithm A from K.

All algorithms are divided into three big classes [13]: subrecursive, recursive,
and super-recursive. Algorithms and automata that have the same comput-
ing/accepting power (cf., [14]) as Turing machines are called recursive. Examples
are partial recursive functions or random access machines.

Algorithms and automata that are weaker than Turing machines, i.e., that can
compute less functions, are called subrecursive. Examples are finite automata,
context free grammars or push-down automata.

Algorithms and automata that are more powerful than Turing machines are
called super-recursive. Examples are inductive Turing machines, Turing machines
with oracles or finite-dimensional machines over the field of real numbers [4].

Let us consider:

– an algorithm A that takes inputs from the set X and gives outputs that
belong to a set Z,

– an algorithm B that takes inputs from Y and gives outputs that belong to
Z,

– an algorithm C that takes inputs from X and gives outputs that belong to
Y ,

– a class R of automata/algorithms that take inputs from X and give outputs
that belong to a set Y ,



Universality, Reducibility, and Completeness 27

– a class of automata/algorithms Q that take inputs from Y and give outputs
that belong to Z.

Definition 1. An algorithm A is left R-reducible (right Q-reducible or
(R,Q)-reducible) to an algorithm B if there is an algorithm D from R (corre-
spondingly, an algorithm H from Q or an algorithm D from R and an algorithm
H from Q) such that for any element x ∈ X, we have A(x) = B(D(x)) (cor-
respondingly, A(x) = H(B(x)) or A(x) = H(B(D(x))) ), or rA = rD◦ rB

(correspondingly, rA = rB◦ rH or rA = rD◦ rB◦ rH).

Left R-reducibility of A to B is denoted by A ≤R B, and right Q-reducibility
of A to B is denoted by A ≤Q B, and (R,Q)-reducibility of A to B is denoted
by A ≤Q

R B.

Remark 2. It is possible to take classes of functions or binary relations as R
and Q and use them to define reducibility of an algorithm A to an algorithm B.

Lemma 1. If an algorithm A is left (right) R-reducible to an algorithm B and
R ⊆ H, then A is left (correspondingly, right) H-reducible to B.

Let us consider reducibility for some popular classes of algorithms, the class of
all Turing machines T.

Theorem 1. If a Turing machine B defines the total function fB that is a
projection(injection), then any Turing machine A is left T-reducible(right T-
reducible) to B.

Many concepts in recursion theory and theory of algorithms are special kinds
of reductions. At first, we consider such property as universality. We know that
some classes of algorithms have universal algorithms, such as universal Turing
machines, universal inductive Turing machines, universal cellular automata, etc.
Reducibility allows us to define universality. As reducibility is a relative property,
it defines several types of universality.

To build a general concept, let us consider universal Turing machines. The
well known definition tells us that a Turing machine U is universal if given a
description c(T ) of a Turing machine T and some input data x for it, then the
machine U gives the same result as gives T working with the input x, and U
does not give the result when T does not give the result for input x.

We see that the construction of universal for the class K automata and algo-
rithms is usually based on some codification (symbolic description) c: K �→ X
of all automata/algorithms in K.

Definition 2. An automaton/algorithm U is universal for the class K if there
is a codification c: K �→ X such that any automaton/algorithm A from K is left
c-reducible to U .

Examples of universal automata are universal Turing machines, universal cellular
automata [3], universal partial prefix functions [21] universal inductive Turing
machines, universal limit Turing machines [11], and universal functions in the
sense of [22].

A more general concept is R-universality.



28 M. Burgin

Definition 3. An automaton/algorithm U is R-universal for the class K if
there is an automaton/algorithm C from R such that any automaton/algorithm
A from K is left C-reducible to U .

Lemma 2. If an algorithm A is universal for the class K and H ⊆ K, then A
is universal for the class H.

Universal algorithms for the class K does not necessary belong to K as the
following result shows.

Theorem 2. There is no primitive recursive function universal for the class
PRR of recursive recursive functions, but there is a recursive function universal
for the class PRR.

As Lemma 2 implies, the same is true for Turing machines, that is, any universal
Turing machine is universal for the class TT of Turing machines that compute
total functions, but universal Turing machines do not belong to TT and this
class does not have a universal algorithm. In a similar way, any inductive Turing
machine is universal for the class ITT of inductive Turing machines that compute
total functions, but universal inductive Turing machines do not belong to ITT
and this class does not have a universal algorithm.

There is an even more general concept of universality.

Definition 4. An automaton/algorithm U is weakly R-universal for the class
K if any automaton/algorithm A from K is left R-reducible to U .

Theorem 1 implies the following result.

Corollary 1. Any Turing machine B that defines the total function fB is weakly
T-universal for the class T.

A stronger type of reducibility is compositional reducibility of algorithms and
automata. To describe it, we need to formalize the notion of equivalence of
algorithms.

Definition 5. Two algorithms A and B are called functionally (linguisti-
cally) equivalent (with respect to acceptability or decidability) if they
compute the same function fA or relation rA (accept or decide the same language
LA).

Let XA and XB be the domains and Y the range of algorithms A and B, corre-
spondingly, and 1X is the identity mapping of X .

Proposition 1. a) Algorithms A and B are functionally equivalent if and only
if each of them is left 1X-reducible to the other one. b) Algorithms A and B are
linguistically equivalent if and only if there are mappings gA : XA �→ XB and gB

: XB �→ XA such that A is (gA,1Y )-reducible to B and B is (gB,1Y )-reducible
to A.



Universality, Reducibility, and Completeness 29

Example 1. In the theory of finite automata, linguistic equivalence means that
two finite automata accept the same language [19]. This relation is used fre-
quently to obtain different properties of finite automata. The same is true for
the theory of pushdown automata.

Let us consider some system P of schemas for algorithm/automata compo-
sition. Examples of composition schemas are: sequential composition, parallel
composition, compositions that are used in programming languages, such as IF
. . . DO . . . ELSE . . . and DO . . . WHILE . . .. The system P allows us to define
compositional reducibility of algorithms and automata.

Definition 6. An algorithm A is P-reducible to an algorithm B if applying
schemas from P, it is possible to obtain an algorithm D that is functionally
equivalent to A. The algorithm D is called a compositional reduction of A.

In this context, right and left reducibilities are compositional reducibilities de-
fined by the schema of sequential composition.

In turn, compositional reducibility is a kind of operational reducibility.
Let R be a class of automata/algorithms and B an automaton/algorithm.

Then R[B] denotes the class of automata/algorithms that use B as an elemen-
tary operation.

Definition 7. An algorithm A is operationally reducible to an algorithm B
in R if there is an algorithm D in R[B] that is functionally equivalent to A. The
algorithm D is called an operational reduction of A.

It is possible to formalize operational reducibility using algorithms with oracles,
i.e., algorithms that have a possibility to get data from some device called oracle.
This oracle can give, for example, values of some function or inform whether some
element belongs to a given set. In case of R = T and set reducibility by Turing
machines with oracles, it gives the well know concept of Turing reducibility [24].

Proposition 2. If algorithm A is P-reducible to an algorithm B and R is a
class of automata/algorithms closed with respect to schemas from P, then A is
operationally reducible to B in R.

In automata/algorithms that are compositional or operational reductions of
an automaton (program/algorithm) A is P-reducible to an automaton (pro-
gram/algorithm) B, the automaton/algorithm B becomes an imbedded device
(a subprogram). Correspondingly, in an operational reduction, automata from
R form the system in which B is imbedded, while in an compositional reduction,
automata from R are used to build the system in which B is imbedded.

Concepts of compositional and operational reducibilities give corresponding
concepts of universality.

Definition 8. An automaton/algorithm U is compositionally P-universal
(operationally universal in R) for the class K if any automaton/algorithm
A from K is reducible to U in R.



30 M. Burgin

Universal gates in Boolean logic are examples of compositionally universal algo-
rithms. A gate is called universal if all other types of Boolean logic gates (i.e.,
AND, OR, NOT, XOR, XNOR) can be created from a suitable network of this
gate. NAND and NOR logic gates are such universal gates.

Universal partially recursive functions [22] are examples of operationally uni-
versal algorithms. At the same time, there is a wider class of universal functions.
A function f : N �→ N is called a function of big extension if for any number n
from N, its inverse image f−1(n) is infinite.

Theorem 3. [23] Any primitive recursive function f of big extension is oper-
ationally M -universal for the class PR of all partial recursive functions where
M consists of two schemas: minimization and superposition.

3 Universality of Classes of Algorithms, Models of
Computation, and Reducibility

From universality of individual algorithms, we go to universality of classes and
models of algorithms. Such universality is also based on the construction of
reduction and computing power of algorithms. To understand what algorithms
can do and what they cannot is very important not only for theory but also
for the practice of information processing. Different researchers discussed these
problems (cf., for example, [2,12,20,25,27]). One of the pillars of contemporary
computer science is the Church-Turing Thesis (CTT) that gives boundaries of
computer power. In theoretical research and practical development, it is essential
to compare power of different algorithms, computational schemas, programming
systems, programming languages, computers, and network devices.

Informally, a class of algorithms A (is weaker than or equivalent to) has com-
puting power less than or equal to computing power of a class of algorithms B
when algorithms from B can compute everything that algorithms from A can
compute.
Remark 3. Any mathematical or programming model of algorithms defines
some class of algorithms. Thus, comparing classes corresponding to models, we
are able to compare power of these models.
There are different formalizations of computing power comparison. Boker and
Dershowitz [6] give the following definition.

Definition 9. A system of algorithms (or in their terminology, computational
model) B is (computationally), at least, as powerful as a system of algo-
rithms (model) A if there is a bijective mapping π of the domain of B onto
the domain of A such that the corresponding image of any function computed
by some algorithm in A is a function computed by some algorithm in B. It is
denoted by A � B.

In the context of this paper, it means that algorithms from A can be (iπ,π−1)-
reduced to algorithms from B.



Universality, Reducibility, and Completeness 31

Boker and Dershowitz also study other types of techniques for comparing
algorithms and classes of algorithms [5,7].

Another approach of computing power comparison is suggested in [14].

Definition 10. A class of algorithms A has less or equal functional com-
puting power than (is functionally weaker than or equivalent to) a class
of algorithms B when algorithms from B can compute any function that algo-
rithms from A can compute.

Informally it means that algorithms from A can be functionally reduced to
algorithms from B.

Definition 11. Two classes of algorithms are functionally equivalent (or
simply, equivalent) if they compute the same class of functions, or relations
for non-deterministic algorithms.

One of the most illustrious problems at the turn of the 21st century is whether
the classes P of all problems that have a deterministic polynomial time solution
and NP of all problems that have a nondeterministic polynomial time solu-
tion are functionally equivalent. Formally, it is denoted by ”P = NP ?”. This
problem is equivalent to the problem whether the classes PT of all determinis-
tic Turing machines that solve problems in a polynomial time and NTP of all
nondeterministic Turing machines that solve problems in a polynomial time are
functionally equivalent.

Let us consider a class R of automata/algorithms and a family F of classes
of automata/algorithms.

Definition 12. The class R of automata/algorithms is called universal for the
family F if for any automaton/algorithm A that belongs to a class from F, there
is an automaton/algorithm C from R equivalent to A.

For a long time, it was assumed that the following classes are universal for family
of arbitrary classes of algorithms: the class T of all Turing machines, class PR
of all partial recursive functions, class CA of all cellular automata and some
others. This was, in essence, the statement of the Church-Turing Thesis (CTT).
As the notion of algorithm is informal, CTT has been considered as physical
law that is impossible to prove by mathematical means. Some of researchers
suggested that it is necessary to prove CTT under some natural assumptions.
Recently, the situation with CTT has been mostly clarified. At first, it was
demonstrated that there are classes of algorithms more powerful than T [12,13],
then Boker and Dershowitz [6] obtained a very important result proving CTT
for a comprehensible family of state transition machine classes and models of
computation.

Definition 13. The class R of automata/algorithms is called strongly uni-
versal for the family F if for any class K from F, we have K � R.



32 M. Burgin

Let a family R of classes of automata/algorithms satisfies the following axioms.

Axiom BD1 (Sequential Time). Any computational procedure can be viewed
as a collection of states, a sub-collection of initial states and a transition function
from state to state.

Actually, it is possible to consider only one initial state.
Axiom BD2a (Abstract State). All states are first-order structures with the
same vocabulary.
Axiom BD2b (Input-Output). There are input In and output Out functions
on states.
Axiom BD2c (Closure). Procedures are closed with respect to isomorphisms
of states.
Axiom BD2d (Transition). The transition function preserves domains and
isomorphisms of states.
Axiom BD3 (Bounded Exploration). There is a finite bound on the number
of vocabulary terms that affect the transition function.
Axiom BD4 (Initial Data). The initial state consists of an infinite base struc-
ture and an almost constant structure.

In this model, algorithms/automata are called procedures and a computa-
tional model is identified with a class of procedures. A run of a procedure gives
a result by means of the output function Out if and only if this run is finite or
is stabilizing.

Theorem 4. (Boker and Dershowitz [6]) The class T of all Turing machines is
strongly universal for the family R.

It is possible to extend this result to the realm of superrecursive algorithms.
Let a family SR of classes of automata/algorithms satisfy Axioms BD1, BD2b,

BD2c, BD2d, BD3, BD4, and the following modification of the Axioms BD2a.

Axiom SR2a (Abstract State). All states are direct products of two first-
order structures with the same vocabulary.

This allows us to change the definition of procedure convergence and obtaining
the result in the model of Boker and Dershowitz [6]. First, the result is defined
on the second projections of states. Second, a run of a procedure gives a result by
means of the output function Out if and only if this run is finite or is stabilizing
on the second projections of its states.

Theorem 5. The class IT of all inductive Turing machines is universal for the
family SR.

In Theorems 4 and 5, algorithms are characterized by simple operations and con-
sequently, universality of the classes T and IT is characterized from below: they
give the upper bounds (supremum) of computability that uses those simple oper-
ations. At the same time, it is possible to characterize universality of the classes
T and IT from above (as an infinum), taking such algorithmic constructions as
transrecursive operators, which go much beyond algorithms.



Universality, Reducibility, and Completeness 33

Let A be a class of algorithms. A sequence sc Q = {Ai ∈ A; i = 1, 2, 3, . . .}
is called a schema of a transrecusive operator Q. A transrecursive operator is
defined on a set X and takes value in a topological space Y . Given an element x
from X as input, the transrecusive operator Q produces a sequence runQ(x) =
{ai; i = 1, 2, 3, . . .} where ai = Ai(x) when Ai(x) is defined and ai = ∗ when
Ai(x) is not defined. The result of the run runQ(x) is defined only when a finite
number of Ai(x) are not defined and runQ(x) converges in the topological space
Y . The result of the run runQ(x) is equal to the limit lim runQ(x).

Definition 14. A transrecusive operator Q is called constructive if its schema
is constructed (computed) by a recursive algorithm, e.g., by a Turing machine.

Theorem 6. (Burgin and and Borodyanskii [15]) The class IT of all inductive
Turing machines is universal for any family TR of classes of constructive tran-
srecursive operators.

If we add one more condition, the class T of all Turing machines becomes uni-
versal.

Definition 15. A transrecusive operator Q is called (recursively) halting if
all its converging runs are finite (and a recursive algorithm regulates the lengths
of all its runs).

Theorem 7. The class T of all Turing machines is strongly universal for the
family FR of classes of constructive recursively halting transrecursive operators.

4 Completeness of Problems and Reducibility

Computers are made and programs are written to solve different problems. That
is why, it is natural to look at relations between reducibility and universality in
the realm of problems. The first thing that we can find is that universality there
has a different name, or actually, two names - completeness and hardness. We
start with the most general definition of these concepts.

In a general sense, one problem is reducible to another if a method of solv-
ing the second problem yields a method for solving the first. Different kinds of
problem reducibilities (one-one reducibility, many-one reducibility, truth-table
reducibilities and Turing reducibility) are studied in [24] where sets are used
to represent problems and reducibility is considered as relation between sets of
integers.

Although there are reductions of general problems to decidability of sets, these
reductions can hide essential properties of problems and even change their solv-
ability. There are problems in which solvability and/or efficiency of solutions
depend on the initial data representation. That is why here we consider algo-
rithmic problems, solutions to which are given by algorithms or by algorithmic
schemas.

Let E be some schema of reduction of algorithms.



34 M. Burgin

Definition 16. A problem q is E-reducible to a problem p if there is an algo-
rithm B that solves problem p such that some algorithm A that solves problem q
is E-reducible to the algorithm B.

If K is a class of algorithmic problems, and Q is a class of algorithms, complete
and hard problems for the class K relative to the class Q are naturally intro-
duced. It is possible to define the class Q as a complexity class. For example, Q
is the class of all algorithms the computational complexity measure Fc [13] of
which is bounded by a function f or by some function from a class of functions
F. It gives us the following concepts.

Definition 17. A problem p is called hard for the class K relative to the class
Q (with respect to the function f or to the class F) if any problem from K can
be reduced to the problem p by some algorithms from Q (reduced to the problem p
with complexity Fc less than or equal to f or less than or equal to some function
from F, respectively).

Definition 18. A problem p from the class K is called complete for the class K
(relative to the class Q) if any problem from K can be reduced to the problem p
by some algorithms from K (from Q).

For example, the following problems are complete in the class NP of all problems
that have a nondeterministic polynomial time solution (NP-complete problems):
the Traveling Salesman Problem, Satisfiability Problem, Hamiltonian Circuit
Problem, Independent Set Problem, Knapsack Problem, Clique Problem, Node
Cover Problem, and Coloring Problem.

Definition 19. A problem p from the class K is called complete for the class K
with respect to the function f (to the class F) and the measure Fc if any problem
from K can be reduced to the problem p with complexity Fc less than or equal to
f (to some function from F).

In other words, complete problems for a class are hard problems that belong to
the same class.

Proposition 3. Hardness (completeness) with respect to function (to a class of
functions) can be reduced to hardness (respectively, completeness) relative to a
class of algorithms.

The concept of completeness has two parameters. It depends on the type of
reducibility used, and the class Q of algorithms used for reductions. For in-
stance, there are two types of NP-completeness: Cook-completeness and Karp-
completeness [19]. Cook-completeness uses operational reduction, while Karp-
completeness uses left reduction.

Two following results demonstrate how reduction depends on algorithms used
for reduction.
Theorem 8. Deciding if a Turing machine computes a total function can be
reduced by inductive Turing machines of the first order to the halting problem,
but cannot be reduced by Turing machines to the halting problem.



Universality, Reducibility, and Completeness 35

Let f be some function on words in some alphabet. It is possible to consider
the classes PTf of all deterministic Turing machines with the advice f that
solve problems in a polynomial time and NTPf of all nondeterministic Tur-
ing machines with the advice f that solve problems in a polynomial time are
functionally equivalent.

Theorem 9. (Baker, Gill, and Solovey, [1]) There is an advice f such that any
machine from NTPf can be reduced in deterministic polynomial time to a ma-
chine from PTf and there is an advice g such that there are machines in NTPg

that cannot be reduced in deterministic polynomial time to a machine from PTg.

5 Reduction of Properties and Deduction of Theorems

Reducibility of algorithms and problems is a special kind of reducibility of ab-
stract properties [10].

Definition 20. An abstract property P is a triad of the form P = (U, p, L)
where the property P is defined on objects from a universe U and takes value in
a partially ordered set L called the scale of the property P , while p: U �→ L is a
partial function.

Example 2. Let take as U the set of all people. Then we can consider such
properties as age, height, and weight. It is possible to represent age by the ab-
stract property Age = (U, age, T ) where T is the set of natural numbers and
the function age: U �→ T corresponds to each individual the number of years
that passed from her/his birth. In a similar way, it is possible to represent
height and weight by the abstract properties Height = (U, height, R++) and
Weight = (U, weight, R++) where R++ is the set of all positive real numbers
and the functions height: U �→ R++ and weight: U �→ R++ relate to each indi-
vidual her/his height and weight, correspondingly.

Functions that algorithms compute are abstract properties. Languages that
algorithms accept or decide can be determined by their characteristic (member-
ship) functions.

Informally, reduction of a property P1 to a property P2 means that knowing
values of the property P2 , we can find values of the property P1 . This idea is
formalized in the following way.

Let us consider two universes U1 and U2 and two properties P1 = (U1, p1, L1)
and P2 = (U2, p2, L2). We can build the following sets and mappings:

U∗
2 = ∪∞

n=1 Un
2 where Un

2 is the n-th direct power of U2;
L∗

2 = ∪∞
n=1 Ln

2 where Ln
2 is the n-th direct power of L2;

1U1 : U1 �→ U1 is the identical mapping of U1;
if p2 : U2 �→ L2 is a partial mapping, then p∗2: U∗

2 �→ L∗
2 is a partial mapping

such that the restriction of p∗2 on the set Ln
2 is equal to pn

2 .

Definition 21. A property P1 = (U1, p1, L1) is reduced to a property P2 =
(U2, p2, L2) if there is there are mappings g: U1 �→ U∗

2 and h: L∗
2 × U1 �→ L1

where h preserves the partial order in L2 such that p1 = h◦(p2∗×1U1)◦(g×1U1).



36 M. Burgin

Example 3. If we take such properties as the weight P1 of an individual in
kilograms and the weight P2 of an individual in pounds, then P1 is reducible to
P2 and P2 is reducible to P1.

Reduction of abstract properties studied in [10] is a special case the construction
introduced in Definition 21. This special case corresponds to the right reduction
of algorithms. General reduction of abstract properties allows us to represent all
kinds of reduction of algorithms. Indeed, any partial function in general and any
partial function f : X∗ �→ X∗ on words in an alphabet X , in particular, is some
abstract property on these words. Thus, any deterministic algorithm/automaton
determines, according to the PDC postulate, some property on X∗. Now let us
consider, for example, operational reduction for deterministic algorithms with
finite utilization of embedded algorithm (cf. Section 2). This is the case when
we have two algorithms A and B, a class of algorithms R and B is used as
an elementary operation in algorithms from R[B]. As it was mentioned, it is
possible to substitute the algorithm B as an operation in algorithms from R[B]
by the operation of asking an oracle OB, which given some input z, gives the
result B(z) as its answer.

Thus, if the algorithm A is operationally reduced to B in R, there is an
algorithm D in R[B] that is functionally equivalent to A, i.e., there are algo-
rithms W, V ∈ R such that A(x) = W (D(V (x))) and D uses B only finite
number of times. Consequently, there are elements x1 , x2, . . ., xn such that
D in its computation with the input V (x) uses only outputs B(x1), B(x2),
. . ., B(xn) of the algorithm B. Then we define g(x) = (x1, x2, . . . , x − n) and
h(B(x1), B(x2), . . . , B(xn), x) = W (D(B(x1), B(x2), . . . , B(xn), V (x))). As a re-
sult, we obtain a reduction of the property P1 = (X∗, fA, X∗) to a property
P2 = (X∗, fB, X∗). This reduction completely represents reduction of the algo-
rithm A to the algorithm B.

Reduction of properties also provides a new perspective on logic. We know that
axioms and theorems of formal theories define properties of objects in models of
these theories [17]. Usually axioms define simple properties and theorems define
much more complex properties. These properties are binary, that is, an object
either have this property or does not have it.

Proof of a theorem is a reduction of the property represented by this theorem
to the properties represented by axioms. Usually, it is a left D-reduction where D
is the class of all logical deductions. Thus, deduction becomes a kind of reduction.

6 Conclusion

In this paper, we explicated relations between such concepts as reducibility,
universality, hardness, completeness, and deductibility. It is demonstrated that:
concepts of universality of algorithms and classes of algorithms are based on the
construction of reduction of algorithms; concepts of hardness and completeness
of problems are based on the construction of reduction of problems; all considered
concepts of reduction and deduction in logic are kinds of reduction of abstract
properties.



Universality, Reducibility, and Completeness 37

It would be also interesting to study connections between the construction
of reduction and concepts of universality in algebra (e.g., universal algebra),
topology (e.g., universal fibration), theory of categories (e.g., universal map),
and other mathematical fields.

The author is grateful to Maurice Margenstern for useful remarks and advice.

References

1. Baker, T., Gill, J., Solovey, R.: Relativizations of the P =? NP question. SIAM
Journal of Computing 4, 431–442 (1975)

2. Bennett, C.N., Landauer, R.: On Fundamental Physical Limits of Computation.
Scientific American 7, 48–56 (1985)

3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays. Academic Press, London (1982)

4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity of Real Computation.
Springer, New York (1998)

5. Boker, U.: Comparing Computational Power. PhD thesis, Tel-Aviv University
(2004)

6. Boker, U., Dershowitz, N.: A Formalization of the Church-Turing Thesis for State-
Transition Models, http://www.cs.tau.ac.il/

7. Boker, U., Dershowitz, N.: How to Compare the Power of Computational Models.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
54–64. Springer, Heidelberg (2005)

8. Burgin, M.: Multiple computations and Kolmogorov complexity for such processes
(translated from Russian). Notices of the Academy of Sciences of the USSR 269(4),
793–797 (1983)

9. Burgin, M.: Composition of operators in a multidimensional structured model of
parallel computations and systems (translated from Russian). Cybernetics and
System Analysis 19(3), 340–350 (1984)

10. Burgin, M.: Abstract Theory of Properties and Sociological Scaling (in Russian).
In: Expert Evaluation in Sociological Studies. Kiev, pp. 243–264 (1990)

11. Burgin, M.: Universal limit Turing machines (translated from Russian). Notices of
the Russian Academy of Sciences 325(4), 654–658 (1992)

12. Burgin, M.: How We Know What Technology Can Do. Communications of the
ACM 44(11), 82–88 (2001)

13. Burgin, M.: Superrecursive Algorithms. Springer, New York (2005)
14. Burgin, M.: Measuring Power of Algorithms, Programs, and Automata. In: Shan-

non, S. (ed.) Artificial Intelligence and Computer Science, pp. 1–61. Nova Science
Publishers, New York (2005)

15. Burgin, M.S., Borodyanskii, Y.M.: Alphabetic Operators and Algorithms. Cyber-
netics and System Analysis 29(3), 42–57 (1993)

16. Burton, D.M.: The History of Mathematics. McGrow Hill Co., New York (1997)
17. Dreyfus, H.L.: What Computers Can’t Do - The Limits of Artificial Intelligence.

Harper and Row (1979)
18. Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation.

In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 159–
194. Springer, Heidelberg (2004)

19. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Boston, San Francisco, New York
(2001)

http://www.cs.tau.ac.il/


38 M. Burgin

20. Lewis, J.P.: Limits to Software Estimation. Software Engineering Notes 26(4), 54–
59 (2001)

21. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, New York (1997)

22. Malcev, A.I.: Algorithms and Recursive Functions (in Russian), Nauka, Moscow
(1965)

23. Markov, A.A.: Theory of Algorithms (in Russian). Transactions of the Mathemat-
ical Institute of the Academy of Sciences of the USSR 42 (1954)

24. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge Massachusetts (1987)

25. Rubel, L.A.: Some Mathematical Limitations of the General-Purpose Analog Com-
puter. Advances in Applied Mathematics 9, 22–34 (1988)

26. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading, Mass (1967)
27. Turing, A.M.: Can digital computers think? In: Machine Intelligence, vol. 15, Ox-

ford University Press, Oxford (1951, 1999)



Using Approximation to Relate Computational

Classes over the Reals

Manuel L. Campagnolo1 and Kerry Ojakian2

1 DM/ISA, Lisbon University of Technology and SQIG/IT Lisbon
mlc@math.isa.utl.pt

2 SQIG/IT Lisbon and IST, Portugal
ojakian@math.ist.utl.pt

Abstract. We use our method of approximation to relate various classes
of computable functions over the reals. In particular, we compare Com-
putable Analysis to the two analog models, the General Purpose Analog
Computer and Real Recursive Functions. There are a number of existing
results in the literature showing that the different models correspond ex-
actly. We show how these exact correspondences can be broken down into
a two step process of approximation and completion. We show that the
method of approximation has further application in relating classes of
functions, exploiting the transitive nature of the approximation relation.
This work builds on our earlier work with our method of approximation,
giving more evidence of the breadth of its applicability.

1 Introduction

In short, the goal of this paper is to relate various computational models over the
reals, using our notion of approximation as a unifying tool and language. Com-
putable Analysis (originating with Grzegorczyk [13]) is a model of computation
in which the data consists of the real numbers and the computation proceeds
in discrete time steps. From this point of view, a function is considered com-
putable if (roughly) from approximations for the inputs we can compute (using,
for example, a typical discrete Turing Machine) approximations for the outputs.
Various models of analog computation also compute on the real numbers, but
the computation can instead be argued to proceed in an analog manner. We
will consider two analog models, Shannon’s General Purpose Analog Computer
(GPAC) [20] and Moore’s Real Recursive Functions [16] (with some problems
corrected by Costa and Mycka in [17] and [18]). The GPAC is an analog circuit
model, which by the work of Graça and Costa [11] is equivalent to certain dy-
namical systems. The Real Recursive Functions are given by a function algebra
in which the typical discrete operations of recursion are replaced by operations
which yield the solution of a differential equation. Bournez and Hainry ([1], [2])
have related various classes of Computable Analysis and Real Recursive Func-
tions; we have expanded upon their work in [8] and [7]. Bournez, Campagnolo,
Graça, and Hainry [19] have related Computable Analysis to the GPAC. We will

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 39–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



40 M.L. Campagnolo and K. Ojakian

use our method of approximation to provide a unified view of these results and
show how this approach can facilitate the technical development.

The motivation for characterizing the functions of Computable Analysis can
be seen as twofold. On the one hand this work can be seen as a kind of search
for a Church-Turing thesis in the context of real computation. For computation
on the natural numbers there is an agreed upon notion of what it means to be
computable, bolstered by the impressive fact that a number of different models
of computation (e.g. Turing Machines, recursive functions, while programs, etc)
yield the same set of functions. There are various models of computation over
the reals, but many lack that kind of correspondence. In the work surveyed here
the authors have developed exact correspondences within real computation by
modifying existing models in reasonable ways. Developing these correspondences
should be an important step towards some kind of a Church-Turing thesis for
real computation. Another motivation for finding these correspondences is the
possibility of shedding light on the questions of classic complexity theory. In
particular, the complexity class separations (such as the classic P versus NP
question) for the naturals correspond to the analogous questions in Computable
Analysis. Thus, interesting and useful correspondences to Computable Analysis
could allow the use of different tools to attack these questions; for example, per-
haps the P versus NP question would be reduced to a question about differential
equations, allowing new tools to come into play. This latter line of thought is
the motivation behind the work of Costa and Mycka [9], which discusses the
equivalence of an analytic condition to P = NP.

In section 3 we show how the various results (i.e. relating Computable Analy-
sis, the GPAC, and Real Recursive Functions) all fit into a similar two step
pattern we call approximation and completion. To get the rough idea, suppose F
is the class of functions arising from one model, say Computable Analysis, and
H is the class of functions of another model, say the GPAC, and the goal is to
show that F = H. The classes happen to be defined in such a way that we can
isolate subclasses F ′ ⊆ F and H′ ⊆ H, such that F = (F ′)∗ and H = (H′)∗,
where we use the star superscript to indicate some kind of “completion” opera-
tion. The approximation step involves showing, roughly, that F ′ ≈E H′, which
means that for any function in one class, there is a function in the other one
that approximates it with an accuracy dictated by E (E is some set of func-
tions used to measure the accuracy). The completion step requires showing that
from the approximate equality F ′ ≈E H′ we can derive the genuine equality
(F ′)∗ = (H′)∗, i.e. F = H. On the technical side, this way of phrasing the
problem allows us to bring in our tools involving the method of approximation.
On the more philosophical side, we believe the approximation and completion
approach makes important issues concerning these results more explicit. In our
discussion on future work, in section 5, we discuss questions this raises.

In section 4, we show how approximations can be used to facilitate the tech-
nical work of relating different classes of functions. Supposing we are interested
in the claim F ≈E H, the transitive property of the approximation relation can
facilitate the proof. Rather than attempting to show the claim directly, which



Using Approximation to Relate Computational Classes 41

could become cumbersome, we can develop an intermediary class G and break
the task down into two subtasks F ≈E G and G ≈E H. In particular, we will
show how this facilitates the elimination of non-analytic functions from models
of computation, while maintaining the desired properties.

In section 2 we give a streamlined account of the notion of approximation and
related concepts (the details are worked out in our papers [8] and [7], the latter
one providing an improved development). In section 5 we discuss ideas for future
work.

2 Technical Preliminaries

We provide an outline of the technical development from [8] and [7], where
we consider the latter paper to be the improved version, and the one we will
generally cite here. We start by discussing the approximation relation and then
discuss its connections to function algebras.

2.1 Approximation

To develop formally the definition of approximation we will need to be able
to talk about functions and their arguments in a precise way. Unless otherwise
stated, a function has a finite number of real arguments and a single real number
as an output. We let

Var = {xi | i ∈ N}

be the set of variables. A function is always associated with a finite set of
such variables and the values of the functions result from assigning elements of
R to its variables. For convenience, we will use any lower case letters to refer to
variables, and to refer to a finite set of variables we will put a bar over the letter
(e.g. x refers to a variable and x̄ refers to a possibly empty finite subset of Var);
we also use lower case letters to refer to real numbers. When we write a function
f as f(x̄) we mean that the set of variables associated to f is exactly the set x̄
(i.e. no more variables and no less). When we write variables or sets of variables
as a list separated by commas, such as x̄, ȳ, we intend that the variables are all
distinct. If we have lists of variables or numbers ā and b̄, the same lengths as x̄
and ȳ, respectively, then by f(ā, b̄) we mean the value of f when the variables
x̄, ȳ are assigned to ā, b̄ in order (though the elements in a set do not have an
order, we can always think of a set of variables as ordered by its indices). In
fact, given a function f(x̄) with domain X , we often write x̄ ∈ X to mean that
the variables of x̄ should be assigned arbitrarily in X . We will often speak of
a set of functions without explicitly discussing its variables; we always assume
that every function in a set of functions exists in all its “instantiations” with
variables, e.g. the function “x + y” occurring among a set of functions refers to:
x0 + x1, x1 + x0, x1 + x1, x0 + x2, etc. The key point is that given two functions,
the notion of variables allows us to associate the arguments of the functions
in any way we wish. Any classes of functions we work with will be sufficiently
strong that we can freely manipulate variables in typical ways.



42 M.L. Campagnolo and K. Ojakian

We will now define the approximation notion between classes of functions,
building on the notion of approximation between two single functions.

Definition 1. Given a function f(x1, . . . , xk) we let domain(f) ⊆ Rk refer to
its domain.

Definition 2. If X ⊆ Rk and Y ⊆ Rk+r, we say X ⊆ Y if for every x̄ ∈ X,
there is a ȳ ∈ Rr such that x̄, ȳ ∈ Y .

Definition 3. Suppose f(x̄), h(ȳ), and ε(ū) are functions such that x̄, ū ⊆ ȳ.
Suppose also that domain(f) ⊆ domain(h). We say

f �ε h,

if for any assignment to the variables ȳ (which induces assignments on its subsets
x̄, ū) such that x̄ ∈ domain(f), the function ε is defined at ū and the following
holds:

|f(x)− h(y)| ≤ ε(ū).

In the above definition we tend to think of the variables ȳ as converging to
infinity, motivating the following definition.

Definition 4. A function f(x̄, ȳ) has unbounded domain in ȳ if for any
x̄ ∈ R, the set {ȳ | (x̄, ȳ) ∈ domain(f), ȳ > 0} is either empty or unbounded.

An important point in the relationship of the function and the function approxi-
mating it, is the structure of the variables, formalized in the following definition.

Definition 5. Let P(Var) be the set of finite subsets of Var. We call a function
� : P(Var) → P(Var)×P(Var) a structure function, and let �1 refer to its first
component and �2 to its second.

Now we define two notions of approximation between classes of functions, say
A and B, so that roughly, we write A � B to mean that for any function in A,
there is a function in B that “approximates” it. The approximation relation will
be defined relative to a class of functions E that measures the accuracy of the
approximation. The definition will also use a set of structure functions S which
are used to enforce certain relationships between the variables of the function
being approximated and the function approximating it (for example, sometimes
we will want to force the approximating function to have “parameter variables”
and at other times we want to forbid this).

Definition 6. Let A, B, and E be non-empty classes of functions Let S be a
non-empty set of structure functions.

– We write
A �∀ E

S B
to mean that ∀ f(x̄) ∈ A, ∀ � ∈ S, ∀ ε ∈ E (with variables �1(x̄)), ∃ h ∈ B
(with variables �2(x̄)), such that f �ε h, where ε and h have unbounded
domain in their variables other than x̄.



Using Approximation to Relate Computational Classes 43

– We write
A �∃ E

S B
to mean the same thing as A �∀ E

S B, except that the second and third uni-
versal quantifiers (∀) are replaced by existential quantifiers (∃).

To obtain “approximations with no error,” we will use the following set of
functions:

Zero is the set of all functions f(x1, . . . , xk), for any arity k ∈ N, such
that domain(f) = Rk and its value is zero everywhere.

We will be interested in the following sets of structure functions.

– We let the minus sign (“−”) refer to the following singleton set of structure
functions:

On input x̄ it outputs (x̄, x̄).
Thus to write A �∀ Zero

− B means that for any function in A there is a
function in B, possibly with an extended domain, so that on their common
domain they are equal (i.e. the “approximation” must have no error).

– We let the plus sign (“+”) refer to the following set of structure functions
given by taking all the functions of the following form:

On input x̄ it outputs (x̄∪ ȳ, x̄∪ ȳ), where ȳ is a disjoint and possibly
empty finite subset of variables.

– We let ℘ refer to the following set of structure functions given by taking all
the functions of the following form:

On input x̄ it outputs (ū ∪ ȳ, x̄ ∪ ȳ), for any non-empty ȳ disjoint
from x̄ and any ū ⊆ x̄ (ū may be empty).

Thus the “−” approximation does not allow “parameter” variables, the ℘ approx-
imation requires some “parameter” variables, and the + approximation allows
“parameter” variables, but does not require them. The following lemma follow
immediately from the definitions.

Lemma 1. A �∀E
+ B implies A �∃E

℘ B

The stronger definition (i.e. “�+”) is useful for the involved technical work with
approximating, as done in [7], but ultimately, a weaker kind of approximation
(i.e. “�∃

℘”) often suffices for our purposes; in particular, a weaker notion satisfies
lemma 5. However the stronger notion has other important properties, such as
satisfying lemma 3 and satisfying transitivity (lemma 2). It will be useful to list
a number of conventions regarding the approximation notation.

1. If the quantifier is missing in the superscript we assume it is ∀.
2. If the subscript is missing we assume it is “−”.
3. If E is missing, we assume E = Zero.

Thus for example, A � B abbreviates A �∀Zero
− B.

We recall the definition of “bounding class” (we use our older definition from
[8]). A number of technical aspects of the definition are not used in this paper,
but are important for some of the results that are referenced.



44 M.L. Campagnolo and K. Ojakian

Definition 7. For a function f(y, x̄), we say it converges uniformly to in-
finity in y if for every n > 0 there is m0 > 0 such that for any m, x̄ ∈ domain(f),
m ≥ m0, we have f(m, x̄) ≥ n.

Definition 8. A class of functions B is a bounding class if it has the following
properties:

1. There is an f ∈ B such that f ≥ 1.
2. f(x̄) ∈ B implies the value of f(x̄) > 0.
3. For f(x; t) ∈ B, f(x; t) = f(x;−t), for any variable t.
4. f ∈ B implies f is increasing.
5. f ∈ B converges uniformly to infinity in any of its variables.
6. If f(x̄) ∈ B and ȳ are variables disjoint from x̄, then there is f∗(x̄, ȳ) ∈ B

such that f(x̄) ≤ f∗(x̄, ȳ).
7. If f, g ∈ B, then there are h1, h2, h3 ∈ B such that f + g ≤ h1, f ◦ g ≤ h2,

and f ∗ g ≤ h3

An example of a bounding class is the following set of functions that grow like a
tower of exponentials; it will be useful for our work with the elementary functions.

Definition 9. Let exp[n](z) be defined by exp[0](z) = z and exp[n+1](z) = exp[n]

(exp(z)) for n ∈ N and z ∈ R. Let T be the bounding class

T = {exp[n](|x1|+ · · ·+ |xk|) | k, n ∈ N}.

We will form “error classes” by taking the reciprocal of a bounding class, i.e. for
a set of functions F , 1/F = {1/f | f ∈ F}. The following lemma indicates that
the a form of the approximation relation is transitive.

Lemma 2. Suppose A, B, and C are classes of functions, and D is a bounding
class. If A �1/D

+ B �1/D
+ C then A �1/D

+ C.

A useful shorthand is the following “approximate equality.”

Definition 10. We write A ≈E
S B to mean that both A �E

S B and B �E
S A hold.

Another important kind of relationship between classes of functions will be that
of one class dominating another.

Definition 11. Suppose A and B are classes of functions. We write A ≤ B if
for every function f(x) ∈ A there is a function h(x) ∈ B such that domain(f) ⊆
domain(h), and |f(x)| ≤ h(x) for all x ∈ domain(f).

The growth rate of a class of functions turns out to be a significant issue. In
fact for two bounding classes B1 and B2, if both B1 ≤ B2 and B2 ≤ B1 (not the
same as B1 = B2), then they can typically be interchanged without effecting our
results.



Using Approximation to Relate Computational Classes 45

2.2 Function Algebras

We will use function algebras to define most of our classes of functions. They are
defined by giving some basic functions and closing the class under operations on
functions.

Definition 12. Suppose A is a class of functions. An operation with domain
A is a function which takes as input some functions in A, and outputs a single
function.

Definition 13. Suppose B is a set of functions (called basic functions), and O
is a set of operations. Then FA[B;O] is called a function algebra, and it denotes
the smallest set of functions containing B and closed under the operations in O.
For ease of readability, we often list the elements of B or O simply as a list
separated by commas.

One consequence of this definition is that if the set of basic functions have
some property which is preserved under the operations, then all functions in
the algebra will satisfy it. For k ∈ N, by Ck we mean the k−times continuously
differentiable functions on R. We give an example of a function algebra that only
contains C2 functions. It will use the operation of obtaining a solution to a linear
differential equation.

Definition 14. LI is the operation which takes as input functions:

g1(x̄), . . . , gn(x̄), s11(y, x̄), . . . , snn(y, x̄),

and returns h1(y, x̄) where we have the following defining equations:

h1(0, x̄) = g1(x̄)
...

hn(0, x̄) = gn(x̄)

∂
∂y h1(y, x̄) = s11(y, x̄)h1(y, x̄) + . . . + s1n(y, x̄)hn(y, x̄)
...
∂
∂y hn(y, x̄) = sn1(y, x̄)h1(y, x̄) + . . . + snn(y, x̄)hn(y, x̄)

Note that technically LI is not an operation in our sense because it does not
have a fixed arity; we can simply view it as a convenient way to refer to a set
of operations, each having a fixed arity. Note that an aspect of the operation
is to choose the variable y with respect to which we differentiate; we avoid this
technical point for this operation and for others. The basic functions will include

a function θ3, where for any k ∈ N (k > 0), θk(x) =
{

0, x < 0;
xk, x ≥ 0. , a Ck−1 version

of the discontinuous function which indicates whether a number is to the left or
right of zero. We will also include some constants such as π, as well as the set
of projection functions which we denote by P. By comp we mean the operation
of composition.



46 M.L. Campagnolo and K. Ojakian

Definition 15. Let L abbreviate FA[0, 1,−1, π, θ3, P; comp, LI].

To compare function algebras it will be useful to talk about a class of functions,
B, approximating an operation; intuitively this means that if any functions are
approximated by B then applying the operation maintains this approximation
by B.

Definition 16. Suppose op is an arity k operation with domain A, and B is a
class of functions. We write op �E

+ B to mean:

For any f1, . . . , fk ∈ A, if fi �E
+ B (i = 1 . . . k) then op(f1, . . . , fk) �E

+ B

The following is an easy but repeatedly used lemma.

Lemma 3. Suppose B1 and B2 are classes of functions and O1 and O2 are sets
of operations.

If B1 �E
+ FA[B2;O2] and op �E

+ FA[B2;O2] holds for every op ∈ O1 then
FA[B1;O1] �E

+ FA[B2;O2].

We will now recall how composition can be approximated in a general way, using
the concept of modulus functions (recalling the definition from [7], for technical
reasons, in this paper, we add a few requirements).

Definition 17

– |b̄− ā| abbreviates |b1 − a1|+ . . . + |bn − an|.
– Suppose f(x) and m(x, z) are functions such that domain(f) ⊆ domain(m).

Then m is a modulus for f if m is increasing, has unbounded domain in z,
and:

For all x̄ ∈ domain(f) and z > 0 such that x̄, z ∈ domain(m), we
have that |x̄ − ȳ| ≤ m(x̄, z) implies |f(x̄) − f(ȳ)| ≤ 1/z, for all
ȳ ∈ domain(f).

– A class of functions M is a modulus for the class of functions F if for any
f ∈ F , there is m ∈M such that m is a modulus for f .

It will be useful here and later to define the notion of restricting a function
(whether a real function or even in the case where the function is an operation).

Definition 18. If f is any function, say with domain A, and B is a set, we
write f|B to indicate the function f with its domain restricted to A∩ B.

Lemma 4. (see [7]) Let H and F be a classes of functions closed under com-
position and let B be a bounding class.

If H ≤ B and H has a 1/B modulus then comp|H �1/B
+ F .



Using Approximation to Relate Computational Classes 47

3 Characterizing Computable Analysis

We will begin by introducing the technical framework and then discuss our
general approach to characterizing the classes of computable analysis via the
two step pattern of approximation and completion. We will use standard notions
from Computable Analysis, as described in Ko [14] and Weihrauch [21], though
following more closely the former. For the most part Ko restricts his attention to
functions defined on a finite interval, while we consider functions defined on all
of R. Thus in this work, a number of notions will depend on both the input value
to the function, as well as the usual accuracy parameter (as in, for example, the
case of the modulus functions).

By C(R) we mean the total R−functions f(x) which can be computed to
accuracy 1/n (n ≥ 1). The real input x is given by an oracle which gives x
to any demanded precision as a dyadic rational; the precision 1/n is given by
putting n on the input tape (we call this the accuracy input). Note that we
use the approximation of the form 1/n rather than 1/2n, since for the classes we
work with are sufficiently strong that such distinctions have no effect.

We now consider the process of approximation and completion. We will use the
approximation as defined in the previous section, as a first step in this process. For
the second step, the completion, all the results will use some kind of limit operation,
which will be defined relative to a class of suitable functions (the idea of using a
limit operation goes back to work from Costa and Mycka, see [17] and [18]).

Definition 19. We say a class of functions E converges to 0 if any function
in E converges to 0 as any of its arguments (which has unbounded definition)
converges to +∞.

A useful class that converges to 0 is 1/ID, where ID is the set of unary iden-
tity functions, one for each variable (i.e. 1/ID = { 1

x0
, 1

x1
, 1

x2
, . . .}). The limit

definition follows our older paper [8].

Definition 20. Suppose E is a class of functions that converges to 0. E−LIM is
the operation which takes a function f(t, x̄) and returns F (x̄) = limt→∞f(t, x̄) if
the limit exists and there is a function α(t, x̄) ∈ E such that F �α f , for positive t.

If we write LIM without a prefix, we mean 1/ID−LIM.
By F(op), for a class of functions F and an operation op, we mean the set

of functions F together with those that result from a single application of op
to a function in F . The next proposition points out how a sufficiently good
approximation leads to a kind of containment when limits are added.

Lemma 5. Suppose A and B are classes of functions and E is a class of func-
tions that converges to 0. Then A �∃E

℘ B implies A � B(E−LIM)

The approach of approximation and completion highlights some interesting is-
sues. In making the process of completion more distinct, we raise the question of
considering the range of techniques that might be employed to complete a class.
Going even further, this raises the question of eliminating completion from the



48 M.L. Campagnolo and K. Ojakian

characterizations of Computable Analysis. Given that Computable Analysis is
defined via an implicit completion process (made explicit in proposition 4), it is
not surprising that its characterizations can all be shown to employ completion
in an explicit manner. Thus, to characterize Computable Analysis without the
use of a completion process would be more of a surprise and provide a more
distinctly alternative model of computation. We expand upon these thoughts in
section 5. In the ensuing subsections we work out the approximation and com-
pletion approach for particular cases: The elementary Real Recursive Functions
in part 3.1, Computable Analysis in part 3.2, the computable Real Recursive
Functions in part 3.3, and the GPAC in part 3.4.

3.1 Elementary Computability

In this section we recall our work ([8], [7]) concerning elementary computability,
which extended the work of [1]. By E(R) we mean the same class as C(R), except
that for real input x and accuracy input n, the computation time is restricted
to elementary time. A fundamental point in this development is the following
approximation theorem (from [7], though stated there with a different, though
“equivalent” bounding class).

Proposition 1. E(R) ≈1/T
+ L

To obtain a class of functions which actually equals E(R) we will add various
kinds of limit operations to L. The following is a limit operation that resembles
LIMω (definition 8 from [1]).

Definition 21. dLIM is the operation which takes a function f(t, x̄) and if
| ∂
∂tf | ≤ 1/2t for t ≥ 1, it returns F (x̄) = limt→∞f(t, x̄).

Note that the derivative condition guarantees the existence of the limit. Our
main result from [7] is the following.

Proposition 2. E(R) = L(LIM) = L(dLIM)

Proof. By proposition 1 we know E(R) ≈1/T
+ L, which implies E(R) ≈∃ 1/ID

℘ L.
Thus by lemma 5 we can conclude E(R)(LIM) ≈ E(R), and since we are dealing
with total functions, E(R) = L(LIM). The part on dLIM follows from our work
in [7].

Thus the result characterizing E(R) can be stated as an approximation (propo-
sition 1) and completion (proposition 2), for two different kinds of completion
processes.

3.2 Rephrasing Computable Analysis

We will show how the functions of computable analysis can be defined by an
approximation and completion. We use a class of functions defined on the ratio-
nals. A Q−function f(x) is in C(Q) if there is a computable function on N that
computes it in the following sense: On input x = (−1)k(p/q) ∈ Q (p/q in lowest



Using Approximation to Relate Computational Classes 49

terms and k = 0 or 1) the machine is given the triple (p, q, k), and it computes
a triple (a, b, s) such that f(x) = (−1)s(a/b); for a sequence of inputs x we use
a sequence of triples. Note that C(R) contains only continuous functions, while
C(Q) contains discontinuous functions.

Definition 22. Consider the Q−functions from C(Q) that have a computable
modulus function (so they are all continuous). Let ModRec be the unique con-
tinuous extensions of these functions to R.

Now we make an observation that is similar to corollary 2.14 of Ko [14].

Proposition 3. C(R) ≈1/ID
℘ ModRec

The proof is basically identical to that of [7], lemma 6.7, except that here we
consider computable rather than elementary functions, and only care about a
1/ID approximation. From proposition 3 and the fact that C(R) is closed under
LIM, lemma 5 yields the following.

Proposition 4. C(R) = ModRec(LIM)

Definition 23. Consider the Q−functions from C(Q) that are continuous. Let
CtnRec be the unique continuous extensions of these functions to R.

Question 1. Is the following true: C(R) = CtnRec(LIM)?

If the answer to the question is yes, then we have an interesting characterization
of C(R): Starting with E(Q), a discrete class making no reference to approxi-
mation or oracle inputs, we restrict it in a necessary way in order to equal C(R)
(i.e. being continuous) and this turns out to be sufficient. However, a negative
answer seems reasonable, in which case there is a continuous function defined
via a computable function, whose modulus is not computably bounded, which
would be an interesting negative result.

3.3 A Function Algebra for the Computable Functions over the
Reals

We recall that Bournez and Hainry [2] find a function algebra characterizing
the C2 functions of C(R). For their results they define an operation CLI which is
similar to LI except that it receives an extra input function and requires the result
of the operation to be bounded by this function. They also define a restricted
root-finding operation called UMU (see [2] for details on these operations). Both
here and later, we will need to restrict classes of functions in various ways.

Definition 24. Suppose S is a set which contains finite lists of the form
(X1, . . . , Xk), where Xi ⊆ R. For a class of functions F , we let

FS = {f(x1, . . . , xk)|X1×...×Xk
| f ∈ F and (X1, . . . , Xk) ∈ S}.



50 M.L. Campagnolo and K. Ojakian

In this section we will be interested in the following set of lists:

R = {([a1, b1], . . . , [ak, bk]) | k ∈ N, ai, bi ∈ Q such that 0 ∈ [ai, bi]},

They then prove (though restated here) as theorem 7.1 in [2]:

For C2 functions

C(R)|R ≈ FA[0, 1, θ3, P; comp, CLI, UMU, LIMω]|R

Note that we have used an approximate equality in the above claim; recall-
ing the definition, this means that for a function from either class there is one
that extends it in the other class. Though the essential aspects of the proofs
in [2] seem sound, there are some ambiguities. We restrict our statement of
their theorem in two ways. First, we have stated it with reference to the set
R, rather than with reference to all compact domains (which appears to be
more in line with their work, namely lemma 7.4 of [2]). Second, by stating it
as an approximate equality, rather than an equality, we are not requiring that
the domains of corresponding functions be identical. To get an actual equality
(requiring equal functions to also have equal domains) would require restricting
C(R) to having exactly the domains that can be achieved with functions from
FA[0, 1, θ3, P; comp, CLI, UMU, LIMω]. This leads to a question of interest here
and generally for function algebras containing partial functions.

Question 2. Can we provide a nice characterization of the following set:

{Domain(f) | f ∈ FA[0, 1, θ3, P; comp, CLI, UMU, LIMω]}.

Now we consider formulating their result as an approximation and completion.
From proposition 7.1 and an inspection of the proofs of lemmas 7.4 and 7.5 of
[2], we can restate the core of their results as follows.

Proposition 5. For C2 functions the following holds:

– FA[0, 1, θ3, P; comp, CLI, UMU] � C(R)
– C(R)|R �1/ID

℘ FA[0, 1, θ3, P; comp, CLI, UMU]

Applying lemma 5 and using the fact that C(R) is closed under LIM, we can
conclude the following.

Proposition 6

– FA[0, 1, θ3, P; comp, CLI, UMU](LIM) � C(R)
– C(R)|R � FA[0, 1, θ3, P; comp, CLI, UMU](LIM)

We can state the above result as an approximate equality, and using our work
from [7], we can include dLIM, as an equivalent completion process.

Proposition 7. For C2 functions:

C(R)|R ≈ FA[0, 1, θ3, P; comp, CLI, UMU](LIM)|R
= FA[0, 1, θ3, P; comp, CLI, UMU](dLIM)|R



Using Approximation to Relate Computational Classes 51

Thus their result can be stated as an approximation and completion. Further-
more, following the form of our proof for L in [7], the following should be true
(i.e. without a restriction to C2 functions), using our method of lifting.

Conjecture 1. For total functions:

C(R) = FA[0, 1, θ3, P; comp, CLI, UMU](LIM)
= FA[0, 1, θ3, P; comp, CLI, UMU](dLIM)

3.4 GPAC Computability

We begin by considering the result from [19], which shows how to characterize
C(R) by a kind of circuit model. We discuss their result and how to phrase it
as an approximation and completion. We then discuss some short-comings of
the result, which suggests a series of questions. The General Purpose Analog
Computer (GPAC) is an analog circuit model of computation, which by the work
of Graça and Costa [11] can be characterized as the solution of a system of
polynomial differential equations (the solutions of such a system are called the
GPAC or GPAC−generable functions). In [19], they build upon the definition of
GPAC−generability to define a notion they call GPAC−computable, which adds
a mechanism of “converging computation” to the model. We recall the definition
from that paper with the modification that we only consider the interval [0, 1]
(just for notational convenience, as treating a general interval [a, b] is about the
same).

Definition 25. [19] A function f : [0, 1] → R is GPAC−computable iff there
exists some computable polynomials p : Rn+1 → Rn, p0 : R → R, and n − 1
computable real values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of Cauchy problem y′ = p(y, t) with initial condi-
tion (α1, ..., αn−1, p0(x)) set at time t0 = 0

2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x) − yi(t)| ≤
yj(t) for all x ∈ [0, 1] and all t ∈ [0, +∞).1

They then show in [19] (theorem 17) that (recalling definition 24, in this section
we use sets of lists which just contain one element and simply list that element):

C(R)|[0,1] = GPAC−computable.

To put the problem into our language, we will define an operation which
takes a list of polynomials and a list of initial conditions and returns the first
component of the resulting system of polynomial differential equations.

Definition 26. Let PI be the operation which takes as input some polynomials

P0(x), P1(u1, . . . , un, t), . . ., Pn(u1, . . . , un, t),
1 We assume that y(t) is defined for all t ≥ 0. This condition is not necessarily satisfied

for all polynomial ODEs, and we restrict our attention only to ODEs satisfying this
condition.



52 M.L. Campagnolo and K. Ojakian

and some initial conditions: α1, . . . , αn−1 ∈ R. Consider the following initial
value problem:

∂
∂ty1(t, x) = P1(y1, . . . , yn, t)
...
∂
∂tyn(t, x) = Pn(y1, . . . , yn, t)
y1(0, x) = α1

...
yn−1(0, x) = αn−1

yn(0, x) = P0(x)

and return y1(t, x) if it is defined for all 0 ≤ x ≤ 1 and t ≥ 0.

We define a version of GPAC−generability, relative to a set of real numbers.

Definition 27. For a set X ⊆ R, let GPACX be the set of functions that can be
created by PI using polynomials with coefficients from X and initial conditions
from X.

Definition 28. For X ⊆ R, let GEX be the set of functions y(t, x) in GPACX

such that for any x, y(t, x) → 0 as t →∞.

Now, if we let CR be the set of computable real numbers, then

GPAC−computable = GPACCR(GECR−LIM).

Note that this uses the observation that for a polynomial, being computable is
the same as having computable coefficients. This way of talking about GPAC−
computability has the advantage of making the concept of limits a separate and
distinct idea, thus allowing us to state the approximation claim (a significant
claim, which is basically a restatement of much of the work from [19]).

Proposition 8. C(R)|[0,1] �∃GECR
℘ GPACCR ⊆ C(R)|[0,1],[0,∞)

In the previous proposition, the inclusion follows immediately from theorem
24 of [19] (a theorem in fact restating a result from [12]). The approximation
follows from theorem 17 of [19] and the definitions; if f(x) ∈ C(R)|[0,1] then by
theorem 17, f(x) is GPAC−computable, which in our terminology implies the
approximation (it should be possible to extract a more direct proof from [19],
using the proof of theorem 18 and the latter part of section 5).

The following shows essentially that C(R) is closed under limits.

Lemma 6. C(R)|[0,1],[0,∞)(GECR−LIM) ⊆ C(R)|[0,1]

Proof. Suppose f(x, t) ∈ C(R)|[0,1],[0,∞) and y(x, t) ∈ GECR, and suppose g(x) =
limt→∞ f(x, t), such that g �y f . We need to show that g ∈ C(R)|[0,1], that is on
input x ∈ [0, 1], and accuracy input n ∈ N, we need to compute g(x) to accuracy
1/n. We just need to compute f(x, t) for a large enough t, and to find such a t
we just follow the algorithm of [19], at the end of section 6.



Using Approximation to Relate Computational Classes 53

Proposition 9. C(R)[0,1] = GPACCR(GECR−LIM)

Proof. Using lemma 6 and proposition 8, together with lemma 5, we can con-
clude:

C(R)|[0,1] ⊆ GPACCR(GECR−LIM)
⊆ C(R)|[0,1],[0,∞)(GECR−LIM)
⊆ C(R)|[0,1]

Now we consider some short-comings of the result. This result fits into a series of
results which characterize computable analysis in a manner that is different and
distinct from it. The result of [19] only does this to an extent, because it includes
notions from computable analysis in the definition of GPAC−computability. Or
stated in terms of the GPACX , the approximation and completion results use
the fact that X = CR, the computable reals. Thus a very natural question is
to consider if the result of [19] can be modified so that it holds for a notion of
GPAC computability that is distinct from computable analysis. In our notation,
this amounts to the following question:

Question 3. Does there exist a nice set X ⊆ R, defined without computable
analysis, such that:

C(R)|[0,1] = GPACX(GEX−LIM)?

Phrasing the result as an approximation and completion, emphasizes the exact
completion process used, in this case GEX−LIM. Thus a refinement of the above
question would be to consider a more natural limit operation E−LIM, for some
nicer E such as 1/ID. To answer the previous question (say, with a nicer E),
following the approach above, first we would show an approximation:

C(R)|[0,1] �∃E
℘ GPACX ⊆ C(R)|[0,1],[0,∞).

Since we are thinking of X ⊆ CR, the inclusion is immediate, and the work
involved is to show the approximation, which, if true, by lemma 5 would answer
the question affirmatively.

We hope that we can use our methods to facilitate answering these questions.
Note that GPACX = X(PI), which is probably not the same as FA[X ; PI]; recall
that the first notation indicates that PI can be applied once with coefficients
from X , while the latter function algebra allows repeated use of PI . To bring
our methods into play, we would like to be able to discuss the GPAC as a function
algebra. This motivates the following question.

Question 4. Is there an operation PI∗ which is similar to PI , but has the
property that for X ⊆ R, X(PI∗) = FA[X ; PI∗], or at least X(PI∗) ≈E

+ FA[X ; PI∗],
for a suitable E?

We could refer to X(PI∗) by GPAC∗
X . If we found such an operation PI∗, then

showing C(R) = GPAC∗
X(E−LIM) could be reduced to showing C(R) �E

+



54 M.L. Campagnolo and K. Ojakian

FA[X ; PI∗], perhaps with the domains of the functions of C(R) restricted in some
way. Now we could employ a strategy that we will use in the next section. We
could consider the intermediary class FA[CR; PI∗] and then due to transitivity,
break down the goal into the two subgoals:

1. C(R) �E
+ FA[CR; PI∗], and

2. FA[CR; PI∗] �E
+ FA[X ; PI∗]

We expect the first subgoal to proceed as in [19]. Furthermore, we expect that
PI∗ has been defined so that PI∗ �E

+ FA[X ; PI∗], thus by lemma 3, we can reduce
the second subgoal to CR �E

+ FA[X ; PI∗], or in words:

Starting with coefficients from X and applying polynomial differential
equations, can we approximate all the computable reals?

4 Making Classes Analytic

In the previous section we discussed some connections between Computable
Analysis and analog models like the Real Recursive Functions and the GPAC.
These models are claimed to be closely related to classical physics, where initial
value problems play a prominent role. As pointed out in [10], models of natural
phenomena arising from classical physics typically involve differential equations
with analytic solutions. However, the function algebras considered in sections
3.1 and 3.3 do not satisfy this condition since they include the function θ3 which
is not analytic. The role of θ3 is crucial in the proofs of the results stated in sec-
tions 3.1 and 3.3, since it allows us to define continuous “clocks” and simulate
the discrete dynamics of Turing Machines. This is done using a technique first
applied in [3] and refined in the context of function algebras on the reals in [5]
and [6]. In this section we apply the method of approximation to show that θ3

can be removed from the function algebra L (we also remove the constant π),
obtaining therefore an analytic characterization we denote by La of the elemen-
tary computable functions. The basic technical point we use here is the fact that
the approximation relation is transitive, which allows us to define an intermedi-
ary class of functions for convenience and then dispense with it in the end. For
example, in relating E(R) and La, we use L as a convenient intermediary class
(convenient because it has the non-analytic function θ3 which makes technical
work easier).

Formally, we define the class

La = FA[0, 1,−1, P; comp, LI],

which only contains analytic functions. As pointed out in [6], if the input func-
tions to the operation LI are total, then the operation defines a new total function
whose bound is exponential in terms of the bound on the input functions, allow-
ing us to conclude the following.



Using Approximation to Relate Computational Classes 55

Lemma 7. All functions in L and La are total. Furthermore, L,La ≤ T .

We claim that L ≈1/T
+ La. We just need to show that L �1/T

+ La since the
other direction is trivial. We show how La can approximate θ3 and π and the
operations of L.

Lemma 8. θ3, π �1/T
+ La.

Proof. Let α(x, z) ∈ T . Consider the well known function y(t) = e−t2 defined
in La by y′ = −2ty and y(0) = 1 which satisfies

∫ +∞
−∞ y(t)dt =

√
π. Therefore,

c1(x) = 2
∫ x

0
y(t)dt gives an approximation of

√
π in La with error smaller than

e−x2
. Squaring that function gives an approximation of π. Given c1, we can also

obtain an approximation c2(x) of 1√
π

in La since it contains a function that
approximates 1

x over R+ as noticed in Remark 6 of [1].
Now, take the indefinite integral F (x) =

∫ x

0 y(t)dt, which is a strictly in-
creasing function such that limx→−∞ F (x) = −

√
π

2 and limx→+∞ F (x) =
√

π
2 .

Define the analytic function H(x, u) = c2(u)F (xu) + 1
2 which is therefore in La

(H stands for an approximation of the Heaviside function). Finally, there is a
u ∈ La such that θa(x, z) = H(x, u(x, z))x3 is the desired approximation of θ3,
i.e. |θa(x, z) − θ3(x)| < 1

α(x,z) . To see that this is true, notice that u can be
chosen sufficiently larger than any α ∈ T .

To approximate the operations we follow a more general approach than necessary,
since we believe it may be more generally applicable (discussed at the end of the
section). The goal is to show for any operations op in the algebra that replacing
a set of functions f1, . . . , fk by their approximations f∗

1 , . . . , f∗
k , still defines an

approximation h∗ = op(f∗
1 , . . . , f∗

k ) of h = op(f1, . . . , fk). To achieve this we have
to understand how far apart h∗ and h are when their arguments vary. Toward
this end we define the notion of Lipschitz functions.

Definition 29

– Let f be a function on n arguments, and L a function on 2n arguments. f
is L−Lipschitz if domain(f) × domain(f) ⊆ domain(L), and |f(b̄)− f(ā)| ≤
L(b̄, ā)|b̄ − ā| for all ā and b̄ in the domain of f .

– A class of functions F is B−Lipschitz if for every f in F there is an L in
B such that f is L−Lipschitz.

A given f trivially admits the Lipschitz function |f(b̄)− f(ā)|/|b̄− ā|. However,
this cannot always be defined (for instance L is not closed under division). More-
over, we will be interested in increasing Lipschitz functions. To show that classes
have increasing Lipschitz functions we can use derivative bounds.

Definition 30. Let F be a class of differentiable functions. Then

F ′ = { ∂

∂xi
f(x1, . . . , xk) | f ∈ F}.



56 M.L. Campagnolo and K. Ojakian

Lemma 9. If F is a class of functions such that F ′ ≤ B, where B is a bounding
class, then F is B−Lipschitz.

Proof. Let h(x1, . . . , xn) be in F . To find a Lipschitz function, consider:

|h(b̄)− h(ā)| ≤ |h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)|
+ |h(a1, b2, . . . , bn)− h(a1, a2, b3 . . . , bn)|

...
+ |h(a1, . . . , an−1, bn)− h(a1, . . . , an)|

Consider the first term |h(b1, b2, . . . , bn)−h(a1, b2, . . . , bn)|. Consider the function
∂

∂x1
h(x1, x2, . . . , xn) ∈ F ′ and let β(x1, . . . , xn) ∈ B such that β dominates it. Let

L1(b; a) = β(|a1|+ |b1|, b2, . . . , bn), which is dominated by a function in B (which
for convenience we also call L1). Since β is increasing and |a1|, |b1| ≤ |a1|+|b1|, L1

dominates the derivative ∂
∂x1

h(x1, b2, . . . , bn) for all x1 on the interval between
a1 and b1, and so we have:

|h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)| ≤
|(h(a1, b2, . . . , bn)+|b1−a1|L1(b; a))−h(a1, b2, . . . , bn)| = L1(b; a)|b1−a1|.

We obtain L2(b; a), . . . , Ln(b; a) for all the terms and we bound the sum by
something in B, yielding our Lipschitz function.

For instance, Proposition 4.3 of [6] gives bounds on the derivatives of functions
in L. The same bounds apply to La. By lemmas 9 and 7 this implies that L and
La are T −Lipschitz. In our notation this gives the following lemma.

Lemma 10. L′, (La)′ ≤ T . Moreover, L and La are T −Lipschitz.

This permits us to establish a bound on the distance of the solutions of two
different initial value problems. In our case we are interested in comparing initial
value problems defined with a function and its approximation.

Lemma 11. (Gronwall-type inequality) Let f(t, y) and f∗(t, y, α) be total C1

functions with domain R such that f �1/α
+ f∗. Let y(t) and y∗(t, α) be the

solutions of the following initial value problems:

y(t0) = a, d
dty(t) = f(t, y) and y∗(t0) = a∗, ∂

∂ty
∗(t, α) = f∗(t, y∗, α)

If f is β−Lipschitz, and we let
∫ x

β abbreviate
∫ x

t0
β(u, u, y(u), y∗(u, α)) du, then

where defined we have:

|y(t)− y∗(t, α)| ≤ e
∫ t

β (|a− a∗|+
∫ t

t0

e−
∫ s

β

α
ds)

Proof. The hypothesis lead to the inequalities (the first inequality follows from
y and y∗ being C1; for ease of readability we sometimes drop the arguments to
these functions.).



Using Approximation to Relate Computational Classes 57

∂

∂t
|y(t)− y∗(t, α)| ≤ | d

dt
y(t)− ∂

∂t
y∗(t, α)|

= |f(t, y)− f∗(t, y∗, α)|
≤ |f(t, y)− f(t, y∗)|+ |f(t, y∗)− f∗(t, y∗, α)|

≤ β(t, t, y, y∗)|y − y∗|+ 1
α

.

The inequality above implies that

∂

∂t
|y(t)− y∗(t, α)| − β(t, t, y, y∗)|y(t)− y∗(t, α)| ≤ 1

α
.

Multiplication by the integrating factor e−
�

t β yields

∂

∂t
(e−

∫ t
β |y(t)− y∗(t, α)|) ≤ e−

∫ t
β

α
.

Integrating this from t0 to t gives

e−
∫ t

β |y(t)− y∗(t, α)| − |a− a∗| ≤
∫ t

t0

e−
∫ s

β

α
ds,

which finally leads to the claimed bound.

Lemma 12. LI|L �1/T
+ La.

Proof. Let h be the solution of the linear initial value problem h(x̄, 0) = g(x̄)
and ∂

∂th(x̄, t) = s(x̄, t)h(x̄, t), where g, s ∈ L. Let g∗, s∗ ∈ La be approxi-
mations of g and s. We claim that the solution h∗ of the linear initial value
problem h∗(x̄, 0, α) = g∗(x̄, α) and ∂

∂th
∗(x̄, t, α) = s∗(x̄, t, α)h∗(x̄, t, α) can be

made arbitrarily close to h in La. More precisely, we claim that there is a
H(x̄, t, z) = h∗(x̄, t, α(t, z)) ∈ La such that |h(x̄, t)−H(x̄, t, z)| ≤ 1/z.

To show this, and since all functions in L and La are total and C1, we ap-
ply lemma 11 where f in the lemma is now the product h s and the initial
condition in the lemma is now a = g(x̄). By lemma 10 there is a β ∈ T
such that f is β-Lipschitz. We want to get rid of the dependence of

∫ x
β on

α so we can freely bound |h − h∗| adjusting α. By hypothesis f �1/α
+ f∗ which

means that f∗(t, y, α) < f(t, y) + 1 ≤ exp(f(t, y)) for all α. Likewise, the initial
conditions in the lemma satisfy a∗ < a + 1. Consider the initial value prob-
lem ∂

∂ty
+(t) = exp(f(t, y+)) and y+(t0) = a + 1. The solution y+(t) exists

in L, is increasing, and bounds y∗(t, α) for all α. Now,
∫ t

β can be bounded by
φ(t) =

∫ t

t0
β(u, u, y(u), y+(u)) du and this is bounded in T . Moreover,

∫ t

t0
e−

� sβds
is bounded by some constant K for β large enough. For the initial condition, we
suppose that |a− a∗| < |a− a+| ≤ 1/α.

Therefore, the right hand side in the inequality in lemma 11 can be bounded
by exp(φ(t))(1 + K)/α. Therefore, choosing α(t, z) ∈ T sufficiently large we can
guarantee that |y(t)− y∗(t, α)| ≤ 1/z. This function y∗(t, α(t, z)) corresponds to
the desired approximation H mentioned earlier in the proof.



58 M.L. Campagnolo and K. Ojakian

To conclude with our goal, we only have to show that the approximation also
holds for composition. To be able to use lemma 4 we have to show that L
has an appropriate modulus. The following lemma shows that this is a direct
consequence of L being T −Lipschitz.

Lemma 13. Suppose B is a bounding class and F is class of functions that is
B−Lipschitz. Then F has a 1/B−modulus.

Proof. Let f(x̄) ∈ F and L(x̄, ȳ) ∈ B be such that |f(x̄) − f(ȳ)| ≤ L(x̄, ȳ)|x̄ −
ȳ|; recall that L is increasing. Let m(x̄, z) ∈ B be a function that dominates
L(x̄, x̄ + 1)z + 1, and suppose |x̄ − ȳ| ≤ 1/m(x̄, z). First note that this implies
that ȳ ≤ x̄ + 1, and thus |x̄− ȳ| ≤ 1/m(x̄, z) further implies:

|f(x̄)− f(ȳ)| ≤ L(x̄, ȳ)
1

m(x̄, z)

≤ L(x̄, x̄ + 1)
1

L(x̄, x̄ + 1)z + 1

≤ 1
z

Proposition 10. L ≈1/T
+ La

Proof. La �1/T
+ L is immediate, so we consider the approximation L �1/T

+

La. By lemma 8, we can approximate all the basic functions of L. Since L is
T −Lipschitz, it has, by lemma 13, a 1/T modulus, and thus we apply lemma 4
to obtain comp|L �1/T

+ La. By lemma 12, LI|L �1/T
+ La. Finally, we apply

lemma 3 to conclude the proof.

Proposition 1, together with transitivity obtains the following approximation for
E(R) with analytic functions.

Proposition 11. E(R) ≈1/T
+ La

As a result we get an improved characterization of the elementary computable
functions, applying lemma 5 (and obtaining exact equality because we are dealing
with total functions).

Proposition 12. E(R) = La(LIM)

We consider now the following generalization of LI where the initial value problem
is not required to be linear.

Definition 31. I is the operation which takes input functions f1(x̄), . . . , fk(x̄)
and g1(x̄, t, y), . . . , gk(x̄, t, y) of appropriate arities and returns h1 which is de-
fined by the equations

h1(x̄, t0) = f1(x̄)
. . .

hk(x̄, t0) = fk(x̄)
∂
∂th1(x̄, t) = g1(x̄, t, h̄)

. . .
∂
∂thk(x̄, t) = gk(x̄, t, h̄).



Using Approximation to Relate Computational Classes 59

We will write this as h = I(f, g). Replacing LI by I in L and La lead to the
following classes.

Definition 32

– Let G be FA[0, 1,−1, θ3, P; comp, I].
– Let Ga be FA[0, 1,−1, P; comp, I].

The class G was investigated in [4] and shown to be closed under an iteration
operation, thus allowing Turing Machines to be simulated. It would be interesting
to show that the class of analytic functions Ga could do the same. In fact, related
work has already been carried out. In [15] it was shown that analytic maps over
unbounded domains can simulate the transition function of any Turing Machine,
while only recently (by [10]) was it shown that the iterations of those transition
functions can also be simulated with analytic flows over unbounded domains.
These results motivate the search for an approximation between G and Ga.

Unlike the case of the elementary functions, there does not appear to be a
convenient bounding class like T . However, there is a generic way to create
bounding functions that correspond to a given class of functions, by choosing
out the right functions from the class.

Definition 33. Given a class of functions F , let bdF be the functions in F that
satisfy properties 2 through 5 of the definition of bounding class.

Lemma 14. If F is closed under addition, multiplication, and composition, con-
tains a function f ≥ 1 and satisfies property 6 of bounding classes, then bdF is
a bounding class.

Definition 34. We write A �∀
+ B to mean A �∀ 1

bdB
+ B.

Question 5. Does the approximation G ≈∀
+ Ga hold?

We could try to prove this using the approach we described for L. However, some
difficulties need to be overcome. Firstly, it is not clear if given approximations
f∗ and g∗ of f and g, h = I(f, g) and h∗ = I(f∗, g∗) have the same domains. An
additional difficulty is to show that the associated bounding classes are “appro-
priate,” amounting to the question of whether or not bdG ≤ bdGa.

5 Future Work

We make the informal claim that the method of approximation provides a useful
way to organize and think about the relationships between various computational
classes. It both facilitates the technical work and suggests ideas. In particular
we consider the idea of approximation and completion and some issues raised
by organizing the work in this manner. We have seen how the various ways to
characterize Computable Analysis all fit into this two step process of approxima-
tion and completion. One advantage of this is approach is to emphasize that the



60 M.L. Campagnolo and K. Ojakian

fundamental point of the various characterizations is to find an approximation.
It also helps from a technical point of view, separating the proofs into two steps,
where the approximation step can be facilitated by the various tools developed
for this method. Furthermore, by separating out the notion of completion as a
distinct step, we have seen that in some cases, different kinds of completions are
equivalent. This raises the question of considering more broadly the ways that
a class of functions can be completed. To date, the method of choice has been
to use limits, but we could also consider search operators, given the result of
Mycka [17], showing that in a certain context with Real Recursive Functions,
limits and zero-finding are equivalent.

Question 6. What other manners of “completion” are interesting and useful in
relating computational classes to Computable Analysis?

A related line of thought, alluded to earlier, is to consider the elimination of the
completion step.

Question 7. Are there characterizations of Computable Analysis, which natu-
rally capture all of its functions, without a completion operation?

This would be especially interesting in light of the fact that the very definition of
Computable Analysis is tied up with a notion of completion. Already this is appar-
ent in the standard definitions of Computable Analysis as a computable process
which gets increasingly closer to the result, only finished as the accuracy parame-
ter converges to infinity (proposition 4 points out exactly how to put the limit into
the definition). Thus, to find an alternative model with no apparent completion
step would provide a more genuinely distinct way of conceiving of Computable
Analysis. This would seem to be interesting from two points of view. It would
seem to be a very useful kind of result in understanding a Church-Turing thesis
for real computation (recalling the discussion of the introduction). Furthermore,
recall that in the introduction we considered the project of using the correspon-
dences to Computable Analysis as a way to bring in the methods of analysis to
the questions of classic complexity theory. A model of computation which is more
different and does not employ completion could be more useful in this vein.

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia
and EU FEDER POCTI/POCI, namely, via CLC, project ConTComp POCTI
/ MAT / 45978 / 2002, and grant SFRH / BPD / 16936 / 2004.

References

1. Bournez,O.,Hainry,E.:Elementarily computable functionsover therealnumbersand
R-sub-recursive functions. Theoretical Computer Science 348(2–3), 130–147 (2005)

2. Bournez, O., Hainry, E.: Recursive analysis characterized as a class of real recursive
functions. Fundamenta Informaticae 74(4), 409–433 (2006)



Using Approximation to Relate Computational Classes 61

3. Branicky, M.S.: Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoretical Computer Science 138(1), 67–100 (1995)

4. Campagnolo, M.L.: Computational complexity of real valued recursive functions
and analog circuits. PhD thesis, IST, Universidade Técnica de Lisboa (2001)

5. Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentia-
bility in analog computers. Journal of Complexity 16(4), 642–660 (2000)

6. Campagnolo, M.L., Moore, C., Costa, J.F.: An analog characterization of the Grze-
gorczyk hierarchy. Journal of Complexity 18(4), 100–977 (2002)

7. Campagnolo, M.L., Ojakian, K.: The elementary computable functions over the
real numbers: Applying two new techniques (submitted)

8. Campagnolo, M.L., Ojakian, K.: The methods of approximation and lifting in real
computation. In: Cenzer, D., Dillhage, R., Grubba, T., Weihrauch, K. (eds.) Pro-
ceedings of the Third International Conference on Computability and Complexity
in Analysis, CCA 2006, Gainesville, Florida, USA, November 1–5, 2006. Electronic
Notes in Theoretical Computer Science, vol. 167, Elsevier, Amsterdam (2007)

9. Costa, J.F., Mycka, J.: The P �= NP conjecture in the context of real and complex
analysis. Journal of Complexity 22(2), 287–303 (2006)

10. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial dif-
ferential equations. Advances in Applied Mathematics (to appear, 2007)

11. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
Journal of Complexity 19(5), 644–664 (2003)

12. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability and undecid-
ability of maximal intervals of IVPs. Transactions of the American Mathematical
Society (to appear, 2007)

13. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202
(1955)

14. Ko, K.-I.: Complexity Theory of Real Functions. Birkhaüser (1991)
15. Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can

simulate universal Turing machines. Theoretical Computer Science 210(1), 217–223
(1999)

16. Moore, C.: Recursion theory on the reals and continuous-time computation. The-
oretical Computer Science 162, 23–44 (1996)

17. Mycka, J.: μ-recursion and infinite limits. Theoretical Computer Science 302, 123–
133 (2003)

18. Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. Journal of
Complexity 20(6), 835–857 (2004)

19. Graça, D.S., Bournez, O., Campagnolo, M.L., Hainry, E.: Polynomial differential
equations compute all real computable functions on computable compact intervals.
Journal of Complexity (2007), doi:10.1016/j.jco.2006.12.005

20. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys.
MIT 20, 337–354 (1941)

21. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg
(2000)



A Survey of Infinite Time Turing Machines�

Joel David Hamkins



The City University of New York
jdh.hamkins.org

Infinite time Turing machines extend the operation of ordinary Turing machines
into transfinite ordinal time, thereby providing a natural model of infinitary com-
putability, with robust notions of computability and decidability on the reals,
while remaining close to classical concepts of computability. Here, I survey the
theory of infinite time Turing machines and recent developments. These include
the rise of infinite time complexity theory, the introduction of infinite time com-
putable model theory, the study of the infinite time analogue of Borel equivalence
relation theory, and the introduction of new ordinal computational models. The
study of infinite time Turing machines increasingly relies on the interaction of
methods from set theory, descriptive set theory and computability theory.

There is no claim or expectation here for the machines to be physically real-
ized or for the algorithms ever to be carried out by an actual computing device,
even in principle. Rather, the point is to analyze what in principle is mathe-
matically possible with infinitary computation, rather than what is physically
possible, and to mount a mathematical investigation of the resulting structures
and hierarchies, making use of insights arising from the computational paradigm.

Infinite time Turing machines were first considered by Hamkins and Kid-
der in 1989, with the principal introduction provided by Hamkins and Lewis
[HL00]. The theory has now been extended by many others, including Philip
Welch, Benedikt Löwe, Daniel Seabold, Ralf Schindler, Vinay Deolalikar, Rus-
sell Miller, Steve Warner, Giacomo Lenzi, Erich Monteleone, Peter Koepke and
others. Numerous precursors to the theory include Blum-Shub-Smale machines
(1980s), Büchi machines (1960s) and accompanying developments, Barry Burd’s
model of Turing machines with “blurs” at limits (1970s), the extensive develop-
ment of α-recursion and E-recursion theory, a part of higher recursion theory
(since the 1970s), Jack Copeland’s accelerated Turing machines (1990s), Ryan
Bissell-Siders’ ordinal machines (1990s), and more recently, Peter Koepke’s ordi-
nal Turing machines and ordinal register machines (2000s). The expanding litera-
ture involving infinite time Turing machines includes [HL00], [Wel99], [Wel00a],

� Math Subject Codes: 03D30, 03D60, 03E15. Keywords: infinite time Turing ma-
chines, infinitary computability, ordinal computation. This article is adapted from
an abstract of the same title written for the Bonn International Workshop on Ordinal
Computation (BIWOC) 2007.

�� The author’s research has been supported in part by grants from the Research Foun-
dation of CUNY and by grants from the Netherlands Organization for Scientific Re-
search (NWO). The author is also grateful to the University of Amsterdam ILLC
for the support of a Visiting Professorship during his 2007 sabbatical from CUNY.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 62–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Survey of Infinite Time Turing Machines 63

[Wel00b], [L0̈1], [HS01], [HL02], [Sch03], [HW03], [Ham02], [Ham04], [LM04],
[DHS05], [HMSW07], [Ham05], [Wel], [Wel05], [Koe05] and others.

1 A Brief Review of Infinite Time Turing Machines

Let us quickly review the basic operation of the machines and some key concepts.
An infinite time Turing machine has the same hardware as its classical finite time
counterpart, with a head moving on a semi-infinite paper tape, writing 0s and
1s in accordance with the rigid instructions of a finite program having finitely
many states. For convenience, we have used a three tape model, with separate
tapes for input, scratch work and output. At successor stages of computation,

input:

scratch:

output:

1

0

0

1

1

0

q

0

1

1

0

1

0

1

1

1

1

1

0

1

0

1

1

0

1

· · ·

· · ·

· · ·

the machine operates in exactly the classical manner, according to the program
instructions. The new part of the computational behavior comes at limit ordinal
stages. At any limit stage ξ, the machine is placed into the special limit state,
one of the distinguished states alongside the start and halt states; the head is
reset to the left-most cell; and the tape is updated by placing in each cell the
lim sup of the values previously displayed in that cell. This completely specifies
the configuration of the machine at stage ξ, and the computation may continue
to stage ξ+1 and so on. Output is given only when the machine explicitly attains
the halt state, and computation ceases when this occurs.

Since there is plenty of time for the machines to write out and inspect infinite
binary strings, the natural context for input and output to the machines is Cantor
space 2ω, which I shall denote by R and refer to as the reals. The machines
therefore provide an infinitary notion of computability on the reals. Program
p computes the partial function ϕp

... R → R, defined by ϕp(x) = y if program
p on input x yields output y. A subset A ⊆ R is infinite time decidable if its
characteristic function is infinite time computable. The set A is infinite time
semi-decidable if the constant function 1 � A is computable. This is equivalent to
A being the domain of an infinite time computable function (but not necessarily
equivalent to A being the range of such a function). Initial results in [HL00] show
that the arithmetic sets are exactly those that are decidable in time uniformly
less than ω2 and the hyperarithmetic sets are those that are decidable in time
less than some recursive ordinal. Every Π1

1 set is decidable, and the class of
decidable sets is contained in Δ1

2.
An easy cofinality argument establishes that every computation either halts

or repeats by some countable ordinal stage. An ordinal α is clockable if there is
a computation ϕp(0) halting on exactly the αth step. A real x is writable if it
is the output of a computation ϕp(0), and an ordinal is writable if it is coded



64 J.D. Hamkins

by such a real. There are of course only countably many clockable and writable
ordinals, because there are only countably many programs. Both the clockable
and writable ordinals extend through all the recursive ordinals and far beyond;
their supremum is recursively inaccessible and more. While the writable ordinals
form an initial segment of the ordinals, there are gaps in the clockable ordinals,
intervals of non-clockable ordinals below the supremum of the clockable ordinals.
The gap structure itself becomes quite complicated, with limits of gaps some-
times being gaps and so on, and ultimately it exhibits the same complexity as the
infinite time version of the halting problem. Nevertheless, [Wel00b] established
that the supremum of the clockable and writable ordinals is the same. A real x
is eventually writable if there is a computation ϕp(0) for which x appears on the
output tape from some point on (even if the computation does not halt), and x
is accidentally writable if it appears on any of the tapes at any stage during a
computation ϕp(0). By coding ordinals with reals, we obtain the notions of even-
tually and accidentally writable ordinals. If λ is the supremum of the clockable
or writable ordinals, ζ is the supremum of the eventually writable ordinals and
Σ is the supremum of the accidentally writable ordinals, then [HL00] establishes
λ < ζ < Σ. Welch [Wel00a] showed that Lλ ≺Σ1 Lζ ≺Σ2 LΣ, and furthermore,
these ordinals are characterized as the least example of this pattern.

Many of the fundamental constructions of classical finite time computability
theory carry over to the infinite time context. For example, one can prove the
infinite time analogues of the smn-theorem, the Recursion theorem and the
undecidability of the infinite time halting problem, by essentially the classical
arguments. Some other classical facts, however, do not directly generalize. For
example, it is not true in the infinite time context that if the graph of a function
f is semi-decidable, then the function is computable. This is a consequence of
the following:

Theorem 1 (Lost Melody Theorem). There is a real c such that {c} is
infinite time decidable, but c is not writable.

The real c is like the lost melody that you can recognize yes-or-no when someone
sings it to you, but which you cannot sing on your own; it is a real that exhibits
sufficient internal structure that {c} is decidable, but is too complicated itself
to be writable. If f(x) = c is the function with constant value c, then f is not
computable because c is not writable, but the graph is decidable, because we
can recognize whether a pair has the form (x, c).

The infinite time analogue of the halting problem breaks into lightface and
boldface versions, h = { p | ϕp(p) ↓ } and H = { (p, x) | ϕp(x) ↓ }, respectively.
These are both semi-decidable and not decidable, but in the infintary context,
they are not computably equivalent.

There are two natural sorts of oracles to be used in oracle computations. First,
one can use any real as an oracle in exactly the classical manner, by adjoining an
oracle tape on which the values of that real are written out. Second, one naturally
wants somehow to use a set of reals as oracle; but we cannot expect in general
to write such a set out on the tape (perhaps it is even uncountable). Instead,
the oracle tape is initially empty, and during the computation the machine may



A Survey of Infinite Time Turing Machines 65

freely write on this tape. Whenever the algorithm calls for it, the machine may
make a membership query about whether the real currently written on the oracle
tape is a member of the oracle or not. Thus, the machine is able to know of any
real that it can produce, whether the real is in the oracle set or not.

The result is a notion of relative computabiliy ϕA
p (x), a notion of reduction

A <∞ B and a notion of equivalence A ≡∞ B, with a rich theory of the infinite
time Turing degrees. For any set A, we have the lightface jump A� and the
boldface jump A�, corresponding to the two halting problems. One can show
A <∞ A� <∞ A�, as well as A�� ≡∞ A� and a great number of other interesting
interactions. In [HL02], we settled the infinite time analogue of Post’s problem,
the question of whether there are intermediate semi-decidable degrees between
0 and the jump 0�. The answer cuts both ways:

Theorem 2. The infinite time analogue of Post’s problem has both affirmative
and negative solutions.

1. There are no reals z with 0 <∞ z <∞ 0�.
2. There are sets of reals A with 0 <∞ A <∞ 0�. Indeed, there are incomparable

semi-decidable sets of reals A ⊥∞ B.

In other work, Welch [Wel99] found minimality in the infinite time Turing de-
grees. Hamkins and Seabold [HS01] analyzed one-tape versus multi-tape infinite
time Turing machines, and Benedikt Löwe [L0̈1] observed the connection be-
tween infinite time Turing machines and revision theories of truth.

2 A Survey of Recent Developments

Let me now discuss some of the recent developments in the theory of infinite
time Turing machines, including the rise of infinite time complexity theory, the
introduction of infinite time computable model theory, the beginnings of infinite
time computable equivalence relation theory and the introduction of new related
models of ordinal computation.

2.1 Infinite Time Complexity Theory

Ralf Schindler [Sch03] initiated the study of infinite time complexity theory by
solving the infinite time Turing machine analogue of the P versus NP question.
To define the polynomial class P in the infinite time context, Schindler observed
simply that all reals have length ω and the polynomial functions of ω are bounded
by those of the form ωn. Thus, he defined that a set A ⊆ R is in P if there is a
program p and a natural number n such that p decides A and halts on all inputs
in time before ωn. The set A is in NP if there is a program p and a natural
number n such that x ∈ A if and only if there is y such that p accepts (x, y), and
p halts on all inputs in time less than ωn. Schindler proved P �= NP for infinite
time Turing machines in [Sch03], using methods from descriptive set theory to
analyze the complexity of the classes P and NP. This has now been generalized
in joint work [DHS05] to the following, where the class co-NP consists of the
complements of sets in NP.



66 J.D. Hamkins

Theorem 3. P �= NP ∩ co-NP for infinite time Turing machines.

Some of the structural reasons behind P �= NP ∩ co-NP are revealed by placing
the classes P and NP within a larger hierarchy of complexity classes Pα and NPα

using computations of size bounded below α. We proved, for example, that the
classes NPα are identical for ω + 2 ≤ α ≤ ωCK

1 , but nevertheless, Pα+1 � Pα+2

for any clockable limit ordinal α. It follows, since the Pα are steadily increasing
while the classes NPα ∩ co-NPα remain the same, that Pα � NPα ∩ co-NPα for
any ordinal α with ω + 2 ≤ α < ωCK

1 . Thus, P �= NP ∩ co-NP. Nevertheless, we
attain equality at the supremum ωCK

1 with

PωCK

1
= NPωCK

1
∩ co-NPωCK

1
.

In fact, this is an instance of the equality Δ1
1 = Σ1

1 ∩Π1
1 .

This same pattern of inequality Pα � NPα ∩ co-NPα is mirrored higher in
the hierarchy, whenever α lies strictly within a contiguous block of clockable
ordinals, with the corresponding Pβ = NPβ ∩ co-NPβ for any β that begins a
gap in the clockable ordinals. In addition, the question is settled in [DHS05] for
the other complexity classes P+, P++ and Pf . Benedikt Löwe has introduced
analogues of PSPACE.

2.2 Infinite Time Computable Model Theory

Computable model theory is model theory with a view to the computability of
the structures and theories that arise. Infinite time computable model theory
carries out this program with the notion of infinite time computability provided
by infinite time Turing machines. The classical theory began decades ago with
such topics as computable completeness (Does every decidable theory have a
decidable model?) and computable categoricity (Does every isomorphic pair of
computable models have a computable isomorphism?), and the field has now
matured into a sophisticated analysis of the complexity spectrum of countable
models and theories.

The motivation for a broader context is that, while classical computable model
theory is necessarily limited to countable models and theories, the infinitary com-
putability context allows for uncountable models and theories, built on the reals.
Many of the computational constructions in computable model theory generalize
from structures built on N, using finite time computability, to structures built
on R, using infinite time computability. The uncountable context opens up new
questions, such as the infinitary computable Löwenheim-Skolem Theorem, which
have no finite time analogue. Several of the most natural questions turn out to
be independent of ZFC.

In joint work [HMSW07], we defined that a model A = 〈A, . . .〉 is infinite
time computable if A ⊆ R is decidable and all functions, relations and con-
stants are uniformly infinite time computable from their Gödel codes and input.
The structure A is decidable if one can compute whether A |= ϕ[ā] given �ϕ�
and ā. A theory T is infinite time decidable if the relation T � ϕ is computable



A Survey of Infinite Time Turing Machines 67

in �ϕ�. Because we want to treat uncountable languages, the natural context for
Gödel codes is R rather than N.

The initial question, of course, is the infinite time computable analogue of the
Completeness Theorem: Does every consistent decidable theory have a decidable
model? The answer turns out to be independent of ZFC.

Theorem 4 ([HMSW07]). The infinite time computable analogue of the Com-
pleteness Theorem is independent of ZFC. Specifically:

1. If V = L, then every consistent infinite time decidable theory has an infinite
time decidable model, in a computable translation of the language.

2. It is relatively consistent with ZFC that there is an infinite time decidable
theory, in a computably presented language, having no infinite time com-
putable or decidable model in any translation of the language.

The proof of (1) uses the concept of a well-presented language L, for which there
is an enumeration of the symbols 〈sα | α < δ〉 such that from any �sα� one
can uniformly compute a code for the prior symbols 〈�sβ� | β ≤ α〉. One can
show that every consistent decidable theory in a well-presented language has
a decidable model, and if V = L, then every computable language has a well
presented computable translation. For (2), one uses the theory T extending the
atomic diagram of 〈WO,≡〉 while asserting that f is a choice function on the ≡
classes. This is a decidable theory, but for any computable model A = 〈A,≡, f〉
of T , the set { f(cu) | u ∈ WO } is Σ1

2 and has cardinality ω1. It is known to be
consistent with ZFC that no Σ1

2 set has size ω1.
For the infinite time analogues of the Löwenheim-Skolem Theorem, we proved

for the upward version that every well presented infinite time decidable model has
a proper elementary extension with a decidable presentation, and for the down-
ward version, every well presented uncountable decidable model has a count-
able decidable elementary substructure. There are strong counterexamples to a
full direct generalization of the Löwenheim-Skolem theorem, however, because
[HMSW07] provides a computable structure 〈R, U〉 on the entire set of reals,
which has no proper computable elementary substructure.

Some of the most interesting work involves computable quotients. A structure
has an infinite time computable presentation if it is isomorphic to a computable
structure, and has a computable quotient presentation if it is isomorphic to the
quotient of a computable structure by a computable equivalence relation (a con-
gruence). For structures on N, in either the finite or infinite time context, these
notions are equivalent, because one can computably find the least element of any
equivalence class. For structures on R, however, computing such distinguished
elements of every equivalence class is not always possible.

Question 5. Does every structure with an infinite time computable quotient pre-
sentation have an infinite time computable presentation?

In the finite time theory, or for structures on N, the answer of course is Yes. But
in the full infinite time context for structures on R, the answer depends on the
set theoretic background.



68 J.D. Hamkins

Theorem 6. The answer to Question 5 is independent of ZFC. Specifically,

1. It is relatively consistent with ZFC that every structure with an infinite time
computable quotient presentation has an infinite time computable presenta-
tion.

2. It is relatively consistent with ZFC that there is a structure having an infi-
nite time computable quotient presentation, but no infinite time computable
presentation.

Let me briefly sketch some of the ideas appearing in the proof. In order to
construct an infinite time computable presentation of a structure, given a com-
putable quotient presentation, we’d like somehow to select a representative from
each equivalence class, in a computably effective manner, and build a structure
on these representatives. Under the set theoretic assumption V = L, we can
attach to the L-least member of each equivalence class an escort real that is
powerful enough to reveal that it is the L-least member of its class, and build a
computable presentation out of these escorted pairs of reals. (In particular, the
new presentation is not built out of mere representatives from the original class,
since these reals may be too weak; they need the help of their escorts.) Thus,
if V = L, then every structure with a computable quotient presentation has a
computable presentation. On the other side of the independence, we prove state-
ment 2 by the method of forcing. The structure 〈ω1, <〉 always has a computable
quotient presentation built from reals coding well orders, but there are forcing
extensions in which no infinite time computable set has size ω1, on descriptive
set theoretic grounds. In these extensions, therefore, 〈ω1, <〉 has a computable
quotient presentation, but no computable presentation.

2.3 Infinite Time Computable Equivalence Relation Theory

Recently, Sam Coskey and I have introduced the infinite time analogue of Borel
equivalence relation theory and reductions. The idea of the classical Borel theory
is to provide a structural analysis of the relative complexity of canonical equiv-
alence relations on the reals (or more generally, Polish spaces) by comparing
them under many-one Borel reducibility. Since Borel functions are all infinite
time computable from their real parameters, it is a slight generalization of this
theory to consider infinite time computable reductions. Thus, for any two equiv-
alence relations E and F on R, we say that E computably reduces to F , written
E ≤c F , if there is an infinite time computable function f (freely allowing real
parameters) such that x E y ←→ f(x) F f(y). A slightly more generous notion
of reduction is E ≤sc F if there is a semi-computable function f ... R → R, that
is, a function whose graph is infinite time decidable (in a real parameter), such
that x E y ←→ f(x) F f(y). An intriguing threshold phenomenon suggests that
the distinction between computable reductions and semi-computable reductions
is near a critical boundary.

To explain, let me first mention that there are an enormous number of natural
equivalence relations on the reals to which this reduction theory applies, includ-
ing all the Borel relations that have been studied in the classical theory. All the



A Survey of Infinite Time Turing Machines 69

positive Borel reductions, of course, carry over to the infinite time context be-
cause all Borel functions are infinite time computable from their real parameters.
Furthermore, many of the classical non-reductions in the Borel theory actually
establish the lack of an infinite time computable reduction, because they often
establish the lack of a measurable reduction, and all infinite time computable
functions are measurable. In this way, the infinite time computable reduction
theory is tightly interwoven into the classical Borel theory. Sample theorems
include:

Theorem 7

1. E0 and ≡SET do not computably reduce to =.
2. ≡WO and ≡SET computably reduce to ≡HC .
3. ≡HC and ≡SET do not computably reduce to ≡WO.
4. ≡ck and ≡WO are computably bi-reducible.

Interestingly, we know that it is consistent that the semi-computable reduction
theory completely collapses.

Theorem 8. If V = L, then every infinite time computable equivalence relation
E on R semi-computably reduces to the equality relation.

In this sense, under V = L every computable relation is semi-computably
smooth. The proof uses the ideas of Theorem 6, and as in that argument, the
reduction functions are not selectors for the relation.

One should not construe this theorem to suggest that the semi-computable
reduction relation is trivial, however, since under other set theoretic hypotheses
inconsistent with V = L, such as a mild determinacy assumption, every semi-
computable function is measurable. In this case the semi-computable degrees are
definitely not collapsed in this way.

2.4 New Models of Ordinal Computation

Lastly, let me briefly discuss some new models of ordinal computation. Peter
Koepke [Koe05] introduced the Ordinal Turing Machines, which generalize the
infinite time Turing machines by extending the tape to transfinite ordinal length.
The limit rules are accordingly adjusted so that the machine can make use of
this extra space. Specifically, rather than using a special limit state, the ordinal
Turing machines simply have a fixed order on their (finitely many) states, and at
any limit stage, the state is defined to be the lim inf of the prior states. The head
position is then defined to be the lim inf of the head positions when the machine
was previously in that resulting limit state. For uniformity, then, Koepke defines
that the cells of the tape use the lim inf of the prior cell values (rather than
lim sup as with the infinite time Turing machines). If the head moves left from
a cell at a limit position, then it appears all the way to the left on the first cell.

These machines therefore provide a model of computation for functions on the
ordinals, and notions of decidability for classes of ordinals. The main theorem
is that the power of these machines is essentially the same as that of Gödel’s
constructible universe.



70 J.D. Hamkins

Theorem 9 (Koepke). The sets of ordinals that are ordinal Turing machine
decidable, with finitely many ordinal parameters, are exactly the sets of ordinals
in Gödel’s constructible universe L.

Koepke and Siders [KS06] introduced another highly interesting model, the or-
dinal register machines. These machines generalize ordinary register machines
to ordinal values and ordinal time. Thus, the machines have finitely many reg-
isters, each capable of holding one ordinal. The (finite) program is allowed to
copy the contents of one register to another, to increment a register by 1, to zero
out a register, and to branch depending on whether one register is larger than
another. At limit stages, the contents of the registers are simply the lim inf of the
previous contents, and the program line is the lim inf of the previously executed
lines. Despite the apparently weak power of these machines, Koepke and Siders
have proved that they are fully as powerful as the ordinal Turing machines, in
terms of the sets of ordinals they can decide.

Theorem 10 (Koepke, Siders). The ordinal register machine computable sets
of ordinals, with finitely many ordinal parameters, are exactly the sets of ordinals
in Gödel’s constructible universe L.

The most recent work of Koepke shows that both the ordinal Turing machines
and the ordinal register machines, when restricted to computations of time length
α, for an admissible ordinal α, give rise exactly to the intensely-studied com-
putability theory of α-recursion theory, known for example from [Sac90].

References

[DHS05] Deolalikar, V., Hamkins, J.D., Schindler, R.-D.: P �= NP ∩ co-NP for
infinite time turing machines. Journal of Logic and Computation 15(5),
577–592 (2005)

[Ham02] Hamkins, J.D.: Infinite time turing machines. Minds and Machines 12(4),
521–539 (2002) (special issue devoted to hypercomputation)

[Ham04] Hamkins, J.D.: Supertask computation. In: Piwinger, B., Löwe, B., Räsch,
T. (eds.) Classical and New Paradigms of Computation and their Com-
plexity Hierarchies. Trends in Logic, vol. 23, pp. 141–158. Kluwer Acad-
emic Publishers, Dordrecht (2004)

[Ham05] Hamkins, J.D.: Infinitary computability with infinite time Turing ma-
chines. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS,
vol. 3526, Springer, Heidelberg (2005)

[HL00] Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symbolic
Logic 65(2), 567–604 (2000)

[HL02] Hamkins, J.D., Lewis, A.: Post’s problem for supertasks has both positive
and negative solutions. Archive for Mathematical Logic 41(6), 507–523
(2002)

[HMSW07] Hamkins, J.D., Miller, R., Seabold, D., Warner, S.: Infinite time com-
putable model theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.)
New Computational Paradigms: Changing Conceptions of What is Com-
putable, Springer, Heidelberg (2007)



A Survey of Infinite Time Turing Machines 71

[HS01] Hamkins, J.D., Seabold, D.: Infinite time Turing machines with only one
tape. Mathematical Logic Quarterly 47(2), 271–287 (2001)

[HW03] Hamkins, J.D., Welch, P.: P f �= NP f for almost all f . Mathematical
Logic Quarterly 49(5), 536–540 (2003)

[Koe05] Koepke, P.: Turing computations on ordinals. Bulletin of Symbolic
Logic 11(3), 377–397 (2005)

[KS06] Koepke, P., Siders, R.: Register computations on ordinals. Archive for
Mathematical Logic (submitted)

[L0̈1] Löwe, B.: Revision sequences and computers with an infinite amount of
time. Logic Comput. 11(1), 25–40 (2001)

[LM04] Lenzi, G., Monteleone, E.: On fixpoint arithmetic and infinite time turing
machines. Information Processing Letters 91(3), 121–128 (2004)

[Sac90] Sacks, G.E.: Higher Recursion Theory. Perspectives in Mathematical
Logic. Springer, Heidelberg (1990)

[Sch03] Schindler, R.-D.: P �= NP for infinite time Turing machines. Monatshefte
für Mathematik 139(4), 335–340 (2003)

[Wel] Welch, P.: On a question of Deolalikar, Hamkins and Schindler, available
on the author’s web page at
http://www2.maths.bris.ac.uk/$\sim$mapdw/dhs.ps

[Wel99] Welch, P.: Friedman’s trick: Minimality arguments in the infinite time
Turing degrees. In: “Sets and Proofs”, Proceedings ASL Logic Collo-
quium, vol. 258, pp. 425–436 (1999)

[Wel00a] Welch, P.: Eventually infinite time Turing machine degrees: Infinite time
decidable reals. Journal of Symbolic Logic 65(3), 1193–1203 (2000)

[Wel00b] Welch, P.: The lengths of infinite time Turing machine computations.
Bulletin of the London Mathematical Society 32(2), 129–136 (2000)

[Wel05] Welch, P.: The transfinite action of 1 tape Turing machines. In: Cooper,
S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, Springer,
Heidelberg (2005)

http://www2.maths.bris.ac.uk/$sim $mapdw/dhs.ps


The Tiling Problem Revisited

(Extended Abstract)

Jarkko Kari


Department of Mathematics, FIN-20014 University of Turku, Finland
jkari@utu.fi

Abstract. We give a new proof for the undecidability of the tiling prob-
lem. Then we show how the proof can be modified to demonstrate the
undecidability of the tiling problem on the hyperbolic plane, thus an-
swering an open problem posed by R.M.Robinson 1971 [6].

1 Introduction

A Wang tile is a unit square tile with colored edges. Tiles are placed on the plane
edge-to-edge, under the matching constraint that abutting edges must have the
same color. Tiles are used in the given orientation, without rotating. If T is a
finite set of Wang tiles, a tiling of the plane is a covering t : Z2 −→ T of the
plane by copies of the tiles in such a way that the color constraint is satisfied
everywhere.

The tiling problem (also known as the domino problem) is the decision problem
that asks whether a given finite tile set T admits at least one valid tiling t :
Z2 −→ T . This problem was proved undecidable by R.Berger in 1966 [1]. Later,
a simplified proof was given by R.M.Robinson [6]. Both proofs rely on an explicit
construction of an aperiodic tile set. Set T is called aperiodic if it admits some
valid tiling of the plane, but it does not admit a valid periodic tiling, i.e. a tiling
that is invariant under some translation. Note that existence of such aperiodic
sets is not obvious, and in fact it was conjectured prior to Berger’s work that
they do not exist. If aperiodic sets did not exist, then the tiling problem would
be decidable as one can simply try tilings of larger and larger rectangles until
either (1) a rectangle is found that can no longer be tiled, or (2) a tiling of a
rectangle is found that can be repeated periodically. Only aperiodic tile sets fail
to reach either (1) or (2).

Note that Wang tiles are an abstraction of geometric tiles. Indeed, by using
suitable ”bumps” and ”dents” on the sides to represent different colors, one
can effectively replace any set of Wang tiles by a set of geometric tiles (all
polygons with rational coordinates) such that the geometric tiles admit a tiling
(a non-overlapping covering of the plane) if and only if the Wang tiles admit a
tiling. Hence undecidability of the tiling problem by geometric tiles follows from
Berger’s result.

� Research supported by the Academy of Finland grant 54102.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 72–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



The Tiling Problem Revisited 73

In this work we present a new proof for the undecidability of the tiling prob-
lem. The proof is rather different from the earlier proofs. A particularly nice fea-
ture of our proof is the fact that it is purely combinatorial: the role of Euclidean
geometry is minimal. As a consequence the method generalizes easily to tilings
in other lattices as well. In particular, we show that the tiling problem is unde-
cidable in the hyperbolic plane. This resolves an open question asked already by
Robinson in 1971 [6], and discussed by him in more details in 1978 [7]. In partic-
ular, Robinson proved the undecidability of the origin constrained tiling problem
in the hyperbolic plane. This is the easier question where one asks the existence
of a valid tiling that contains a copy of a fixed seed tile. We mention that there
is a concurrent, independent and unpublished approach by M.Margenstern to
the tiling problem in the hyperbolic plane [5].

2 Mortality Problems of Turing Machines and Piecewise
Affine Maps

Our proof is based on a reduction from the mortality problem of Turing machines.
In this question we are given a deterministic Turing machine with a halting state,
and the problem is to determine if there exists a non-halting configuration, that
is, a configuration of the Turing machine that never evolves into the halting state.
Such configuration is called immortal. Note that the Turing machine operates
on an infinite tape, and configurations may contain infinitely many non-blank
symbols.

Mortality problem of Turing machines. Does a given Turing machine have
an immortal configuration ?

The mortality problem was proved undecidable by P.K.Hooper in 1966 [3], the
same year that Berger proved his result. The two results have similar flavor, but
proofs are independent in the sense that they do not rely on each other in either
direction. Note an analogy to aperiodic tile sets: Hooper’s result means that
there must exist aperiodic Turing machines, that is, Turing machines that have
immortal configurations but no immortal configuration repeats itself periodically.
Our present proof establishes another connection between Hooper’s and Berger’s
results since we reduce the mortality problem to the tiling problem.

We first consider dynamical systems determined by piecewise affine transfor-
mations of the plane. There exists a well known technique to simulate Turing
machines by such transformations. The idea is to encode Turing machine config-
urations as two real numbers (l, r) ∈ R2, encoding the left and the right halves
of the infinite tape, respectively. The integer parts of l and r uniquely determine
the next rule of the Turing machine to be used.

For each transition rule of the Turing machine we effectively associate a ra-
tional affine transformation of R2 that simulates that transition. In this fashion
any deterministic Turing machine is converted into a system of finitely many ra-
tional affine transformations f1, f2, . . . , fn of R2 and corresponding disjoint unit
squares U1, U2, . . . , Un with integer corners. Squares Ui serve as domains for the



74 J. Kari

affine maps: the affine transformation fi is applied when (l, r) is in the unit
square Ui. Together the transformations define a partial function f : R2 −→ R2

whose domain is U = U1 ∪ U2 ∪ . . . ∪ Un, and whose operation is

x �→ fi(x) for x ∈ Ui.

Point x ∈ R2 is called immortal if for every i = 0, 1, 2, . . . the value f i(x) is
in the domain U . In other words, we can continuously apply the given affine
transformations and the point we obtain always belongs to one of the given unit
squares Ui.

The reduction from Turing machines to piecewise affine transformations pre-
serves immortality: the Turing machine has an immortal configuration if and
only if the corresponding system of affine maps has an immortal starting point.
Hence we conclude from Hooper’s result that the following immortality question
is undecidable:

Mortality problem of piecewise affine maps. Does a given system of ra-
tional affine transformations f1, f2, . . . , fn of the plane and disjoint unit squares
U1, U2, . . . , Un with integer corners have an immortal starting point ?

3 Reduction into the Euclidean Tiling Problem

Next the mortality question of piecewise affine maps is reduced into the tiling
problem of Wang tiles. The idea is very similar to a construction of an aperiodic
Wang tile set presented in [4]. In [4] a tile set was given such that every valid
tiling is forced to simulate an infinite orbit according to the one-dimensional
piecewise linear function f : [12 , 2] −→ [12 , 2] where

f(x) =
{

2x, if x ≤ 1, and
2
3x, if x > 1.

Function f has no periodic orbits so the corresponding tile set is aperiodic.
The construction needs to be generalized in two ways: (1) instead of linear

maps we need to allow more general affine maps, and (2) instead of R the maps
are now over R2. Fortunately both generalizations are very natural and work
without any complications.

The colors of our Wang tiles are elements of R2. Let f : R2 −→ R2 be an
affine function. We say that tile

n

w

s

e

computes function f if
f(n) + w = s + e.



The Tiling Problem Revisited 75

(The ”input” n comes from north, and f(n) is computed. A ”carry in” w from
the west is added, and the result is split between the ”output” s to the south
and the ”carry out” e to the east.)

Suppose we have a correctly tiled horizontal segment of length n where all
tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(n) +
1
n

w = s +
1
n

e,

where n and s are the averages of the top and the bottom labels. As the segment
is made longer, the effect of the carry in and out labels w and e vanish. In the
limit, if we have an infinite row of tiles, the average of the input labels (if it
exists!) is mapped by f to the average of the output labels.

Consider now a given system of affine maps fi and unit squares Ui. For each
i we construct a set Ti of Wang tiles that compute function fi and whose top
edge labels n are in Ui. An additional label i on the vertical edges makes sure
that tiles of different sets Ti and Tj cannot be mixed on any horizontal row of
tiles. Let

T =
⋃
i

Ti.

If T admits a valid tiling then the system of affine maps has an immortal point.
Namely, consider any horizontal row in a valid tiling. The top labels belong to
a compact and convex set Ui. Hence there is x ∈ Ui that is the limit of the
top label averages over a sequence of segments of increasing length. Then fi(x)
is the limit of the bottom label averages over the same sequence of segments.
But the bottom labels of a row are the same as the top labels of the next row
below, so fi(x) is the limit of top label averages of the next row. The reasoning
is repeated for the next row, and for all rows below. We see that x starts an
infinite orbit of the affine maps, so it is an immortal point.

We still have to detail how to choose the tiles so that any immortal orbit of
the affine maps corresponds to a valid tiling. Consider a unit square

U = [n, n + 1]× [m, m + 1]

where n, m ∈ Z. Elements of

Cor(U) = {(n, m), (n, m + 1), (n + 1, m), (n + 1, m + 1)}

are the corners of U . For any x ∈ R2 and k ∈ Z denote

Ak(x) = �kx�



76 J. Kari

where the floor is taken for each coordinate separately:

�(x, y)� = (�x�, �y�).

Denote
Bk(x) = Ak(x)−Ak−1(x) = �kx� − �(k − 1)x�.

It easily follows that if x ∈ U then

Bk(x) ∈ Cor(U).

Vector x will be represented as the two-way infinite sequence

. . . B−2(x), B−1(x), B0(x), B1(x), B2(x), . . .

of corners. It is the balanced representation of x, or the sturmian representation
of x. Note that both coordinate sequences are sturmian.

The tile set corresponding to a rational affine map

fi(x) = Mx + b

and its domain square Ui consists of all tiles

fi(Ak−1(x))
−Ak−1(fi(x))

+(k − 1)b

fi(Ak(x))
−Ak(fi(x))

+kb

Bk(fi(x))

Bk(x)

where k ∈ Z and x ∈ Ui. Observe the following facts:

(1) For fixed x ∈ Ui the tiles for consecutive k ∈ Z match in the vertical edges
so that a horizontal row can be formed whose top and bottom labels read
the balanced representations of x and fi(x), respectively.

(2) A direct calculation shows that the tile above computes function fi, that is,

fi(n) + w = s + e.

(3) Because fi is rational, there are only finitely many tiles constructed, even
though there are infinitely many k ∈ Z and x ∈ Ui. Moreover, the tiles can
be effectively constructed.

Now it is clear that if the given system of affine maps has an immortal point x
then a valid tiling exists where the labels of consecutive horizontal rows read the
balanced representations of the consecutive points of the orbit for x. We conclude
that the tile set we constructed admits a tiling of the plane if and only if the
given system of affine maps is immortal. Undecidability of the tiling problem
follows from the undecidability of the immortality problem that we established
in Section 2.



The Tiling Problem Revisited 77

4 Reduction into the Tiling Problem on the Hyperbolic
Plane

The method of the previous section works just as well in the hyperbolic plane.
Instead of Wang tiles we use hyperbolic pentagons that in the half-plane model
of hyperbolic geometry are copies of

(2,2)(0,2)

(0,1) (1,1) (2,1)

Note that all five edges are straight line segments. These tiles admit valid tilings
of the hyperbolic plane in uncountably many different ways

In these tilings the tiles form infinite ”horizontal rows” in such a way that each
tile has two adjacent tiles in the next row ”below”.

In the following these hyperbolic pentagons are used instead of the Euclidean
square shaped Wang tiles. The five edges will be colored, and in a valid tiling
abutting edges of adjacent tiles must match. This is an abstraction – analogous
to Wang tiles in the Euclidean plane – that can be transformed into hyperbolic
geometric shapes using bumps and dents.

Exactly as in the Euclidean case we color the edges by vectors x ∈ R2. We
say that pentagon

r

n

ew

l



78 J. Kari

computes the affine transformation f : R2 −→ R2 if

f(n) + w =
l + r

2
+ e.

Note that the difference to Euclidean Wang tiles is the fact that the ”output” is
now divided between l and r.

Consider a correctly tiled horizontal segment of length n where all tiles com-
pute the same f .

s

w e

Average = n

Average =

Clearly we have

f(n) +
1
n

w = s +
1
n

e,

where n and s are the averages of the top and the bottom labels on the segment.
Analogously to the Euclidean case, given a system of affine maps fi and unit

squares Ui, we construct for each i a set Ti of pentagons that compute function
fi and whose top edge labels n are in Ui. It follows, exactly as in the Euclidean
case, that if a valid tiling of the hyperbolic plane with such pentagons exists then
from the labels of horizontal rows one obtains an infinite orbit in the system of
affine maps.

We still have to detail how to choose the tiles so that the converse is also
true: if an immortal point exists then its orbit provides a valid tiling. The tile
set corresponding to a rational affine map

fi(x) = Mx + b

and its domain square Ui consists of all tiles

fi(Ak−1(x))
− 1

2A2(k−1)(fi(x))
+(k − 1)b

fi(Ak(x))
− 1

2A2k(fi(x))
+kb

B2k−1(fi(x)) B2k(fi(x))

Bk(x)

where k ∈ Z and x ∈ Ui. Now we can reason exactly as in the Euclidean case:

(1) For fixed x ∈ Ui the tiles for consecutive k ∈ Z match so that a horizontal
row can be formed whose top and bottom labels read the balanced represen-
tations of x and fi(x), respectively.



The Tiling Problem Revisited 79

(2) A direct calculation shows that the tile computes function fi:

fi(n) + w =
l + r

2
+ e.

(3) There are only finitely many pentagons constructed (because fi is rational),
and they can be formed effectively.

The tiles constructed admit a valid tiling of the hyperbolic plane if and only
if the corresponding system of affine maps has an immortal point. So we have
proved

Theorem. The tiling problem is undecidable in the hyperbolic plane.

References

1. Berger, R.: Undecidability of the Domino Problem. Memoirs of the American Math-
ematical Society 66, 72 (1966)

2. Goodman-Strauss, C.: A strongly aperiodic set of tiles in the hyperbolic plane.
Inventiones Mathematicae 159, 119–132 (2005)

3. Hooper, P.K.: The undecidability of the Turing machine immortality problem. The
Journal of Symbolic Logic 31, 219–234 (1966)

4. Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264
(1996)

5. Margenstern, M.: About the domino problem in the hyperbolic plane, a new solution.
Manuscript, pp. 109 (2007), available at: http://www.lita.univ-metz.fr/ ˜margens/
and also see arXiv:cs/0701096, same title, p. 60

6. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12, 177–209 (1971)

7. Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones
Mathematicae 44, 259–264 (1978)

http://www.lita.univ-metz.fr/~margens/
http://www.lita.univ-metz.fr/~margens/


Decision Versus Evaluation

in Algebraic Complexity

Pascal Koiran

LIP�, École Normale Supérieure de Lyon
Pascal.Koiran@ens-lyon.fr

Abstract. This is a survey of some of my joint work with Sylvain Périfel.
It is focused on transfer theorems that connect boolean complexity to
algebraic complexity in the Valiant and Blum-Shub-Smale models.

Keywords: computational complexity, algebraic complexity, Blum-Shub-
Smale model, Valiant’s model.

1 Introduction

The goal of this note is to highlight some developments in algebraic complexity
theory that have occured since my previous survey [11] was written. The scope
of the present note is much narrower since I will only attempt to present some
of my joint work with Sylvain Périfel.

The survey [11] contained an introduction to the Blum-Shub-Smale theory
of computation in rings [3,2] and its extension to “arbitrary” structures by
Poizat [23]; a presentation of some then-recent results, including the transfer
theorems for the “P=NP ?” problem over the reals with addition and order [8,9];
and some suggestions of future research directions as well as a few concrete steps
in those directions. The main message of the paper was that in order to study
the “PM = NPM?” problem in a structure M , it is essential to find out whether
NPM problems can be solved by polynomial depth computation trees. Indeed,
we know that PM �= NPM if there exists some problem X in NPM that can-
not be solved by polynomial depth computation trees. This follows from the
fact that computation trees are always at least as powerful as circuits: if prob-
lem X cannot be solved by polynomial depth computation trees then it cannot
be solved by polynomial size circuits. On the other hand, if all NPM problems
can be solved by polynomial depth computation trees it may be possible to ob-
tain a transfer theorem for the “PM = NPM?” problem. It turns out that the
structure M of the real numbers with addition and equality complies with the
first branch of this “computation tree alternative”. Indeed, it has been known
for a long time that this structure satisfies PM �= NPM [19]. By contrast, it
is known that for the structure of the real numbers with addition and order
all NPM problems can be solved by polynomial depth computation trees. This
follows from results of computational geometry due Meiser [20] and Meyer auf
� UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 80–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Decision Versus Evaluation in Algebraic Complexity 81

der Heide [21,22]. Those results are instrumental in the proof of our transfer
theorems [8,9], which show that the “P = NP ?” problem in that structure is
equivalent to the classical “P = NP ?” problem1. For the ordered field of the
real numbers, the “PR = NPR?” problem is still open but the following result
was established in [11].

Theorem 1. If NPR problems can be solved by constant-free computation trees
of polynomial depth, we have the following transfer theorem: P = PSPACE im-
plies PR = NPR.

It is still not known whether the hypothesis that NPR problems can be solved
by computation trees of polynomial depth holds true, and my guess is that
it doesn’t2. Nevertheless, we recently managed to make some progress on these
questions by bringing in a new ingredient, namely, Valiant’s own algebraic version
of the “P = NP?” problem [25,26,4]. In Valiant’s framework one studies the
complexity of evaluating polynomials rather than the complexity of decision
problems as in the boolean or Blum-Shub-Smale frameworks. In [14] and [13]
we showed that a collapse of complexity classes in Valiant’s framework implies
PR = NPR and PC = NPC. These results and some relevant background are
presented in the remainder of this paper.

2 The Blum-Shub-Smale Model

Although the original definitions of Blum, Shub and Smale [3,2] are in terms
of uniform machines, we will follow [23] by using families of algebraic circuits
to recognize languages over a field K, that is, subsets of K∞ =

⋃
n≥0 Kn. The

ordinary (boolean) theory of computation is recovered by choosing for K the two-
element field Z/2Z. A similar circuit model was defined by von zur Gathen [28]
(see also [1], section 4.1).

An algebraic circuit is a directed acyclic graph whose vertices, called gates,
have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate
is a gate of outdegree 0. We assume that there is only one such gate in the
circuit. Gates of indegree 2 are labelled by a symbol from the set {+,−,×}.
Gates of indegree 1, called test gates, are labelled “= 0?” if K is unordered (e.g.,
if K = C), or “≤ 0?” if K is ordered (e.g., if K = R). The size of a circuit C, in
symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from Kn to K. On input
ū ∈ Kn the value returned by the circuit is by definition equal to the value of its

1 Strictly speaking, equivalence to the classical problem only holds true in the
constant-free version of the Blum-Shub-Smale model; in the full-fledged model arbi-
trary real constants are allowed, and we have proved equivalence to the non-uniform
problem “P/poly = NP/poly ?”.

2 I will be proved right once since we made the opposite conjecture in [8]. Even for the
linear programming problem (feasibility of sytems of linear inequalities), it seems
that the answer to this question is not known.



82 P. Koiran

output gate. The value of a gate is defined in the usual way. Namely, the value of
input gate number i is equal to the i-th input ui. The value of other gates is then
defined recursively: it is the sum of the values of its entries for a +-gate, their
difference for a −-gate, their product for a ×-gate. If K is unordered, the value
taken by a test gate is 1 if the value of its entry is equal to 0, and 0 otherwise.
If K is ordered, the value taken by a test gate is 1 if the value of its entry is ≤ 0
and 1 otherwise. We assume without loss of generality that the output is a test
gate. The value returned by the circuit is therefore 0 or 1.

The class PK is the set of languages L ⊆ K∞ such that there exists a tuple
ā ∈ Rp (independent of n) and a P-uniform family of polynomial-size circuits
(Cn) satisfying the following condition: Cn has exactly n+ p inputs, and for any
x̄ ∈ Rn, x̄ ∈ L ⇔ Cn(x̄, ā) = 1. The P-uniformity condition means that Cn can
be built in time polynomial in n by an ordinary (discrete) Turing machine. Note
that ā plays the role of the machine constants of [2,3].

As in [6], we define the class PARK as the set of languages over K recognized
by a PSPACE-uniform family of algebraic circuits of polynomial depth (and
possibly exponential size). The same tuple of constants ā is used for every input
size n, as in the definition of PK . Note at last that we could also define similar
classes without the constants ā. We will use the superscript 0 to denote these
constant-free classes, for instance P0

K and PAR0
K .

3 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages.
We thus use arithmetic circuits instead of algebraic circuits. A book-length treat-
ment of this topic can be found in [4].

An arithmetic circuit is the same as an algebraic circuit but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together
with arbitrary constants of K; there are +, − and ×-gates, and we therefore
compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual way
by the polynomial computed by its output gate. Thus a family (Cn) of arithmetic
circuits computes a family (fn) of polynomials, fn ∈ K[x1, . . . , xu(n)]. The class
VPnb defined in [17,18] is the set of families (fn) of polynomials computed by a
family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes fn and there
exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume without
loss of generality that the number u(n) of variables is bounded by a polynomial
function of n. The subscript “nb” indicates that there is no bound on the degree
of the polynomial, in contrast with the original class VP of Valiant where a
polynomial bound on the degree of the polynomial computed by the circuit is
required. Note that these definitions are nonuniform. The class uniform VPnb

is obtained by adding a condition of polynomial-time uniformity on the circuit
family, as in Section 2.



Decision Versus Evaluation in Algebraic Complexity 83

The class VNP is the set of families of polynomials defined by an exponential
sum of VP families. More precisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP
and a polynomial p such that |ȳ| = p(n) and fn(x̄) =

∑
ε̄∈{0,1}p(n) gn(x̄, ε̄).

We can also forbid constants from our arithmetic circuits in unbounded-degree
classes, and define constant-free classes. The only constant allowed is 1 (in order
to allow the computation of constant polynomials). As for classes of decision
problems, we will use the superscript 0 to indicate the absence of constant: for
instance, we will write VP0

nb (for bounded-degree classes, we are to be more
careful; see [17]).

In order to state our transfer theorems it is convenient to define a new class,
called VPSPACE. We will only do this for fields of characteristic 0 since those
are the only fields that we consider in the remainder of this note (the extension
to fields of positive characteristic is straightforward). Roughly speaking, a family
of polynomials is in VPSPACE if its coefficients can be computed in polynomial
space. We first define formally the notion of coefficient function. If α is a tuple
(α1, . . . , αu(n)), we denote by x̄α the monomial xα1

1 · · ·xαu(n)

u(n) .

Definition 1. Let (fn) be a family of multivariate polynomials with integer co-
efficients. The coefficient function of (fn) is the function a whose value on input
(n, α, i) is the i-th bit a(n, α, i) of the coefficient of the monomial x̄α in fn. Fur-
thermore, a(n, α, 0) is the sign of the coefficient of the monomial x̄α. Thus fn

can be written as

fn(x̄) =
∑
α

(
(−1)a(n,α,0)

∑
i≥1

a(n, α, i)2i−1x̄α
)
.

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be
viewed as a language. This allows us to speak of the complexity of the coefficient
function.

Definition 2. The class uniform VPSPACE0 is the set of all families (fn) of
multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-
ments:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to define first uniform VPSPACE0, a uniform class without
constants, because this is the main object of study in this paper. In keeping with
the tradition set by Valiant, however, the class VPSPACE defined in Section 6,
is nonuniform and allows for arbitrary constants. In [12] we have also defined a
class VΠP, which sits in between VPnb and VPSPACE.



84 P. Koiran

4 The Transfer Theorems

One difficulty springs to mind immediately when one tries to establish transfer
theorems between Valiant’s model and the Blum-Shub-Smale model: the for-
mer model is highly non uniform (there is no uniformity requirement on circuit
families, and arbitrary constants are allowed), whereas the latter model is much
more uniform (the availability of arbitrary constants may still be a source of
non-uniformity, especially in the real case). I believe that these discrepancies
are mostly historical accidents. That is, there is nothing special about evalua-
tion problems that makes them more suitable for non-uniform models, and there
is nothing special about decision problems that makes them more suitable for
uniform models. One should therefore feel free to modify the Valiant and Blum-
Shub-Smale conventions in order to facilitate comparisons. This is just what we
do in the following theorem, where we work in the most uniform setting: our
circuit families are uniform and constant-free. It is possible to state (and prove!)
variations of this theorem for other uniformity conventions.

Theorem 2. If uniform VPSPACE0 = uniform VP0
nb then PAR0

R
= P0

R
and

PAR0
C = P0

C
.

The real case of this theorem is established in [14], and the complex case in [13].
In principle, the definitions of Valiant’s classes are relative to a given field K.
Note however that we work with constant-free circuits in this theorem, and
our two fields R and C are both of characteristic 0. There is therefore actually
only one class uniform VP0

nb to consider, and likewise there is only one class
uniform VPSPACE0. It is therefore really the same hypothesis that implies the
two collapses PAR0

R
= P0

R
and PAR0

C
= P0

C
.

Note that for any field K, the collapse of the constant-free class PAR0
K to P0

K

implies the collapse of PARK to PK : just replace constants by new variables in
order to transform a PARK problem into a PAR0

K problem, and then replace
these variables by their original values in order to transform a P0

K problem into
a PK problem. Moreover, for K = R or K = C the collapse of PARK to PK

implies the collapse of NPK to PK since PK ⊆ NPK ⊆ PARK [2].
It would be interesting to find out whether a converse to Theorem 2 can be

established. Results of this type have already been established by Bürgisser [5]
and Lickteig [15,16]. For instance, Bürgisser ([5], Corollary 4.5) has shown that
if PR = PARR, VNP families are ”easy to approximate”.

5 A Proof Sketch

In this section we assume that K = R or K = C. In both cases, the proof of
Theorem 2 builds on the fact that PARK problems can be solved by families
of branching trees of polynomial depth. This result is established in [10] in the
real case, and in [11] in the complex case. At any internal node v of such a tree,
one tests the sign that an arbitrary polynomial Pv takes on the input x ∈ Kn.
As usual, testing the sign means testing whether Pv(x) = 0 when K = C, or



Decision Versus Evaluation in Algebraic Complexity 85

whether Pv(x) is < 0, > 0 or equal to 0 when K = R. The leaves of the tree are
labeled by Accept or Reject.

The constructions of [10] and [11] exploit the geometric structure of PARK

problems. For any problem A ∈ PARK , the restriction A ∩ Kn of A to n-
dimensional inputs is a union of cells of an arrangement of a finite set of hyper-
surfaces. These hypersurfaces are defined by the polynomials whose sign is tested
at the test gates of the circuit recognizing A ∈ Kn. Their degree is bounded by
a singly exponential function of n (because our circuits have polynomial depth),
and it turns out that their number is also bounded by a singly exponential func-
tion of n. By definition, two points x, y ∈ Kn are in the same cell if for any such
polynomial P occuring in the arrangement, P (x) and P (y) have the the same
sign (where the sign is defined as above). Nonempty cells form a partition of
the input space Kn. To decide whether an input x ∈ Kn should be accepted, it
is therefore sufficient to locate x in the arrangement, that is, to find to which
cell it belongs. It is shown in [10] that point location in an arrangement of real
hypersurfaces can be performed by branching trees of depth O(log N), where N
is the number of nonempty cells. The bound established in [11] for the complex
case (or in fact for any unordered field) is O(n log N). It follows from standard
bounds in effective algebraic geometry that N is bounded by a singly exponen-
tial function of n. We have therefore obtained the desired polynomial bound on
the branching complexity of PARK problems.

The reader may have noticed a difference between branching trees and the
computation trees mentioned in the introduction: in the branching tree model,
the cost of polynomial evaluation is completely ignored. This model is therefore
rather unrealistic, at least for the purpose of proving upper bounds (lower bounds
can be found in [24,27]). To obtain a more realistic model, one should take
the cost of evaluating the polynomials Pv into account. Not surprisingly, this
is where Valiant’s model comes into the picture. Namely, an analysis of the
constructions of [10] and [11] shows that the polynomials Pv can be computed
by (uniform, constant free) VPSPACE families. In fact, the analysis reveals
that theses two constructions can be implemented by polynomial size arithmetic
circuits augmented with special “help gates” that can test the sign of VPSPACE
families. Theorem 2 follows immediately from this observation.

In the above proof sketch we have tried as much as possible to handle simul-
taneously the real and complex fields. We now fill in some of the details that
are specific to each field, beginning with the branching tree construction for the
point location problem.

5.1 The Real Case

Point location also plays an important role in the transfer theorems of [8,9];
these two papers deal with arrangements of hyperplanes rather than hyper-
surfaces since the underlying computation model is multiplication-free. In fact,
these transfer theorems can be viewed as effective versions of the constructions
of Meiser [20] and Meyer auf der Heide [21,22]. Meiser’s point location algo-
rithm especially looks at first sight like a good candidate for a generalization to



86 P. Koiran

hypersurfaces. It relies in particular on an efficient algorithm for dividing convex
polyhedra into unions of simplexes. In order to generalize to arrangements of
hypersurfaces, why not divide semi-algebraic sets into unions of “simple” semi-
algebraic sets? Unfortunately, we do not know how to do that efficiently. It turns
out that Grigoriev’s solution [10] is very different, and has a more combinatorial
character. The key combinatorial lemma, also established in [10], is as follows.

Lemma 1. Let u1, . . . , um be pairwise distinct vectors of (Z/2Z)k. If m ≥ 6
there exists a vector v ∈ (Z/2Z)k such that

m/3 ≤ |{1 ≤ i ≤ m; 〈v, ui〉 = 0}| ≤ 2m/3.

In the application to point location, k should be viewed as the number of hyper-
surfaces in the arrangement, and m as the number of satisfiable sign conditions.
By “sign condition”, we mean here a system of polynomial inequalities of the
form fi < 0 or fi > 0, where the fi are the polynomials defining the hypersur-
faces of the arrangement (conditions of the form fi = 0 are handled in a different
way). Lemma 1 is used to perform a kind of binary search among sign conditions
(see [10] for details). In order to obtain a constructive version of Grigoriev’s re-
sult, one needs a constructive version of this lemma. Unfortunately, the original
proof is highly nonconstructive since it is a proof of contradiction. A very dif-
ferent proof, based on a probabilistic argument, was given in [7]. Instead of the
[m/3, 2m/3] range of Lemma 1, this proof yields the smaller and almost opti-
mal range [m/2 −

√
m/2, m/2 +

√
m/2]. A probabilistic algorithm (just choose

v at random) follows by relaxing slightly these bounds. More importantly for
the application to Theorem 2, a deterministic algorithm running in logarithmic
space can be obtained by derandomizing the probabilistic algorithm (or more
precisely, the probabilistic proof). Note that in the application to Theorem 2,
“logarithmic space” should be viewed as “polynomial space” since the the num-
ber of hypersurfaces (k) and of satisfiable sign conditions (m) can be exponential
in the input dimension n. Our derandomization technique is reminiscent of the
proof that bounded-error probabilistic algorithms can be efficiently simulated
by boolean circuit families (i.e., BPP ⊆ P/poly). Namely, for each k and m we
build in logarithmic space a list of vectors which is guaranteed to contain a suit-
able vector v for every possible input. Then we find a suitable v in this list by
an exhaustive search, which can also be implemented in logarithmic space. Of
course, one major difference with the proof that BPP ⊆ P/poly is that making
that proof constructive remains a major open problem.

5.2 The Complex Case

The complex case is in a way simpler than the real case because we do not have
to distinguish between positive and negative inputs. As a result, we do not need
anything like Lemma 1. On the other hand, the complex case looks more difficult
because we cannot use as in [10] the standard “sum of squares” trick to decide
whether a point belong to an algebraic set.



Decision Versus Evaluation in Algebraic Complexity 87

One important ingredient in the O(n log N) branching complexity bound
of [11] is the well-known fact that any algebraic subset of Cn (defined by some
number k of polynomial equations) can be defined by only n + 1 equations (this
is actually where the factor “n” in the O(n log N) bound comes from). The n+1
equations can be obtained by taking “generic” linear combinations of the k orig-
inal equations. The constructive version of this proof obtained in [13] replaces
the generic coefficients in these linear combinations by sufficiently fast growing
sequences of integers. This is by no means a new method in algebraic complexity,
but one must perhaps work harder than usual to keep the size of these integers
under control (see [13] for details).

6 On the Hypothesis That VPSPACE Families Have
Small Circuits

There are actually several version of this hypothesis, depending on uniformity con-
ditions and the role of constants. As pointed in section 4 the hypothesis
uniform VPSPACE0 = uniform VP0

nb in Theorem 2 is the most uniform, hence
the strongest. We define below two increasingly nonuniform classes, VPSPACE0

and VPSPACE. The only difference between VPSPACE0 and uniform VPSPACE0

is the nonuniformity of the coefficient function; VPSPACE is even more nonuni-
form since arbitrary constants are allowed.

Definition 3. The class VPSPACE0 is the set of all families (fn) of multivari-
ate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following requirements:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE/poly.

Now, the class VPSPACE is the set of all families (fn(x̄)) of multivariate polyno-
mials fn ∈ K[x1, . . . , xu(n)] such that there exist a family (gn(x̄, ȳ)) in VPSPACE0

together with a family of tuples of constants (ā(n)) satisfying for all n:

fn(x̄) = gn(x̄, ā(n)).

One could consider up to 6 different versions of the class VPSPACE since there
are 2 possible choices for the coefficient function (uniform or nonuniform) and 3
possible choices for constants (no constants, arbitrary constants as in Valiant’s
original definitions, or the intermediate Blum-Shub-Smale convention in which
the same tuple of constants is used for every input size). Some of these classes
are in fact equal since nonuniformity comes for free when arbitrary constants are
available. We have shown in [14] that the weakest hypothesis, namely, VPnb =
VPSPACE, already has strong consequences:



88 P. Koiran

Proposition 1. Under the generalized Riemann hypothesis (GRH),

VPnb = VPSPACE ⇐⇒ [P/poly = PSPACE/poly and VP = VNP].

Moreover, the implication from right to left holds even without GRH.

One advantage of working with these nonuniform classes is therefore that there is
after all no need to introduce the new class VPSPACE: since we have an equiva-
lence in Proposition 1, the hypothesis can be formulated using only the familiar
classes P/poly, PSPACE/poly, VP and VNP. The hypothesis
uniform VPSPACE0 = uniform VP0

nb has an even more dire consequence:

Proposition 2

uniform VPSPACE0 = uniform VP0
nb =⇒ PSPACE = P-uniform NC.

The separation “PSPACE �= P-uniform NC” is extremely plausible, but to the
best of my knowledge remains a conjecture (by contrast, PSPACE can be sepa-
rated from logspace-uniform NC thanks to the space hierarchy theorem).

References

1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J.
(ed.) Complexity of Computations and Proofs, Quaderni di Matematica. Seconda
Universita di Napoli, vol. 13, pp. 2–15 (2004)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, Heidelberg (1998)

3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

4. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Al-
gorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

5. Bürgisser, P.: The complexity of factors of multivariate polynomials. Foundations
of Computational Mathematics 4(4), 369–396 (2004)

6. Chapuis, O., Koiran, P.: Saturation and stability in the theory of computation over
the reals. Annals of Pure and Applied Logic 99, 1–49 (1999)

7. Charbit, P., Jeandel, E., Koiran, P., Périfel, S., Thomassé, S.: Finding a vector
orthogonal to roughly half a collection of vectors. Journal of Complexity (to appear,
2007)

8. Fournier, H., Koiran, P.: Are lower bounds easier over the reals? In: Proc. 30th
ACM Symposium on Theory of Computing, pp. 507–513. ACM Press, New York
(1998)

9. Fournier, H., Koiran, P.: Lower bounds are not easier over the reals: Inside PH. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
832–843. Springer, Heidelberg (2000)

10. Grigoriev, D.: Topological complexity of the range searching. Journal of Complex-
ity 16, 50–53 (2000)

11. Koiran, P.: Circuits versus trees in algebraic complexity. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, pp. 35–52. Springer, Heidelberg (2000)



Decision Versus Evaluation in Algebraic Complexity 89

12. Koiran, P., Périfel, S.: Valiant’s model: from exponential sums to exponential prod-
ucts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 596–
607. Springer, Heidelberg (2006)

13. Koiran, P., Périfel, S.: VPSACE and a transfer theorem over the complex field
(2007), available from http://perso.ens-lyon.fr/pascal.koiran

14. Koiran, P., Périfel, S.: VPSACE and a transfer theorem over the reals. In: Thomas,
W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 417–428. Springer, Heidel-
berg (2007), long version: http://prunel.ccsd.cnrs.fr/ensl-00103018

15. Lickteig, T.: Testing polynomials for zero. Internal report, Universität Tübingen
(1988)

16. Lickteig, T.: On semialgebraic decision complexity. Technical Report TR-90-52, In-
ternational Computer Science Institute, Berkeley, Habilitationsschrift, Universität
Tübingen (1990)

17. Malod, G.: Polynômes et coefficients. PhD thesis, Université Claude Bernard -
Lyon 1 (2003)

18. Malod, G.: The complexity of polynomials and their coefficient functions. In: Proc.
22nd IEEE Conference on Computational Complexity, IEEE Computer Society
Press, Los Alamitos (2007)

19. Meer, K.: A note on a P �=NP result for a restricted class of real machines. Journal
of Complexity 8, 451–453 (1992)

20. Meiser, S.: Point location in arrangements of hyperplanes. Information and Com-
putation 106(2), 286–303 (1993)

21. Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional
knapsack problem. Journal of the ACM 31(3), 668–676 (1984)

22. Meyer auf der Heide, F.: Fast algorithms for n-dimensional restrictions of hard
problems. Journal of the ACM 35(3), 740–747 (1988)

23. Poizat, B.: Les Petits Cailloux. Nur Al-Mantiq Wal-Ma’rifah. vol. 3, Aléas, Lyon
(1995)

24. Smale, S.: On the topology of algorithms. I. Journal of Complexity 3, 81–89 (1987)
25. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium

on Theory of Computing, pp. 249–261. ACM Press, New York (1979)
26. Valiant, L.G.: Reducibility by algebraic projections. In: Logic and Algorithmic (an

International Symposium held in honour of Ernst Specker). Monographie no 30 de
L’Enseignement Mathématique, pp. 365–380 (1982)

27. Vassiliev, V.A.: On decision trees for orthants. Information Processing Let-
ters 62(5), 265–268 (1997)

28. von zur Gathen, J.: Parallel linear algebra. In: Reif, J. (ed.) Synthesis of Parallel
Algorithms, pp. 573–617. Morgan Kaufmann, San Francisco (1993)

http://perso.ens-lyon.fr/pascal.koiran
http://prunel.ccsd.cnrs.fr/ensl-00103018


A Universal Reversible Turing Machine

Kenichi Morita and Yoshikazu Yamaguchi

Hiroshima University, Graduate School of Engineering,
Higashi-Hiroshima, 739-8527, Japan

Abstract. A reversible Turing machines is a computing model with a
“backward deterministic” property, which is closely related to physical
reversibility. In this paper, we study the problem of finding a small uni-
versal reversible Turing machine (URTM). As a result, we obtained a
17-state 5-symbol URTM in the quintuple form that can simulate any
cyclic tag system.

Keywords: reversible computing, universal Turing machine, cyclic tag
system.

1 Introduction

Reversible computing is a paradigm of computing closely related to physical
reversibility. Since reversibility is one of the fundamental microscopic physical
laws of Nature, it is very important to investigate how computation can be
carried out efficiently in a system having such a property. This is because the
size of future computing devices will surely become nanoscale ones.

A reversible Turing machine (RTM) is a typical model in reversible com-
puting. Bennett [2] proved computation-universality of RTMs. Particularly, he
showed that for any (irreversible) TM, there is an RTM that simulates the for-
mer without producing garbage information. RTMs also have close connection
to other models of reversible computing. In fact, RTMs can be simulated (or
implemented) by the following models in a garbage-less manner.

– Reversible logic circuits
– Reversible cellular automata
– Reversible physical models

Reversible logic elements and circuits were first studied by Toffoli [15,16] and
Fredkin and Toffoli [5]. A Fredkin gate [5] is a universal reversible logic gate from
which any RTM can be constructed. A rotary element (RE) is another universal
reversible logic element proposed by Morita [10]. An RE has one-bit memory
and its operation is very simple as in Fig. 1. It was shown that any RTM can be
constructed by using only REs [10]. Fig. 2 gives an example.

It is also possible to embed RTMs in reversible cellular automata (RCAs).
A direct simulation method of an RTM by a one-dimensional RCA was given
by Morita and Harao [9] (the number of states of the RCA depends on the
simulated RTM). On the other hand, if we use two-dimensional RCAs, it is

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 90–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Universal Reversible Turing Machine 91

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�
(a) (b)

Fig. 1. Operations of a rotary element (RE): (a) the parallel case (i.e., the coming
direction of a particle is parallel to the rotating bar), and (b) the orthogonal case

� � � �

� � � � � � � �

� � � � �

� �

� � � � �

����
� � � �

�
��������

� � � � � � � �
�����

� � � � �
��

� �
�����

� � � � �
�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

��

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

��

�

�

�

��

� ��� ��� ��� � � � � ��� ���•Begin

�End

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �
��

� �

��

� �
��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �
��

� �

��

� �
��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �
��

� �

��

� �
��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

· · ·

Fig. 2. An example of an RTM composed only of REs [10]

possible to simulate any RTM by a single RCA with very simple local transition
function. So far, various models of such universal two-dimesional RCAs have been
proposed. Fig. 3 shows one of these RCAs in which an RE can be embedded,
and hence any RTM can be realized in it [11].

Furthermore, there is a reversible physical model of computation. A billiard-
ball model (BBM) by Fredkin and Toffoli [5] is an interesting model of such a
kind, although it works only in an ideal situation. In a BBM, an RE as well as
a Fredkin gate can be realized, and hence any RTM can be embedded in this
reversible physical system.

Since RTMs plays a key role in the theory of reversible computing, finding
small universal reversible Turing machines (URTMs) is an important problem.
In the case of a classical (i.e., irreversible) universal Turing machine (UTM),
many kinds of very small UTMs have been given so far. Minsky [7] constructed
a UTM(7,4) that can simulate any 2-tag system, where UTM(m, n) stands for an
m-state n-symbol UTM. Rogozhin [13] presented a UTM(24,2), a UTM(10,3),
a UTM(7,4), a UTM(5,5), a UTM(4,6), a UTM(3,10), and a UTM(2,18). Later,
a UTM(22,2) by Rogozhin [14], a UTM(19,2) by Baiocchi [1], and a UTM(3,9)



92 K. Morita and Y. Yamaguchi

t = 0

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦◦

•

�

t = 1

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦ ◦

•

t = 2

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦◦•

t = 3

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦ ◦

•�

(a)
t = 0

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦◦
•

�

t = 1

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦

◦
◦••

t = 2

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦◦ •

•

t = 3

◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦
◦ ◦ •�

(b)

Fig. 3. An RE embedded in a 34-state reversible partitioned cellular automaton with
only 10 rule schemes [11]: (a) The parallel case, and (b) the orthogonal case. Hence,
any RTM can be realized in this reversible cellular space.

by Kudlek and Rogozhin [6] were given, which improve some of the previous
results. Rogozhin’s UTM(4,6) has 22 commands, and this number is the least
one among these UTMs.

In this paper, we study the problem of finding a small URTM. It is of course
possible to convert a known one-tape UTM into a one-tape URTM by the algo-
rithms given in [2,8]. But, if we use such a method, the size becomes very large.
Instead, we employ here a method of simulating a cyclic tag system (CTAG)
proposed by Cook [3]. A CTAG is a rewriting system that can simulate a 2-tag
system, hence it is universal. Since a CTAG is very simple, it is useful to show
universality of other systems. Cook proved universality of the elementary cellular
automaton rule 110 by this. In [12], it is used to construct universal RCAs with
small number of states. A CTAG is also used to derive time complexity results
on UTMs [4].

We give here a URTM(17,5) that can simulate any given CTAG. It has 67
commands, and the product of the numbers of the states and symbols is 85.

2 Preliminaries

2.1 Reversible Turing Machines (RTMs)

When Bennett [2] first introduced an RTM, it was defined in a quadruple form.
This is because an “inverse” Turing machine for a given RTM can be defined
easily if a quadruple formalization is used. However, we also need a quintuple
formalization, because most classical UTMs are given in the quintuple form.
Here, we first give a definition of an RTM in the quadruple form according to
Bennett [2], and then that of an RTM in the quintuple form.



A Universal Reversible Turing Machine 93

Definition 1. A one-tape Turing machine in the quadruple form is defined by

T4 = (Q, S, q0, qf , s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of symbols,
q0 is an initial state (q0 ∈ Q), qf is a final (halting) state (qf ∈ Q), s0 is a
special blank symbol (s0 ∈ S). (Note that, in the construction of a UTM, the
final state is usualy omitted from the state set S.) δ is a move relation, which
is a subset of (Q × S × S × Q) ∪ (Q × {/} × {−, 0, +} × Q). Each element
of δ is a quadruple, and either of the form [p, s, s′, q] ∈ (Q × S × S × Q) or
[p, /, d, q] ∈ (Q × {/} × {−, 0, +} × Q). The symbols “−”, “0”, and “+” stand
for “left-shift”, “zero-shift”, and “right-shift”, respectively. [p, s, s′, q] means if
T4 reads the symbol s in the state p, then write s′ and go to the state q. [p, /, d, q]
means if T4 is in p, then shift the head to the direction d and go to the state q.

Determinism of T4 can be defined as usual, hence we omit its definition. (Note
that, in what follows, we consider only deterministic Turing machines.) Its re-
versibility is defined as follows. T4 is called a reversible Turing machine (RTM)
iff the following condition holds for any pair of distinct quadruples [p1, b1, c1, q1]
and [p2, b2, c2, q2] in δ.

If q1 = q2, then b1 �= / ∧ b2 �= / ∧ c1 �= c2.

Definition 2. A one-tape Turing machine in the quintuple form is defined by

T5 = (Q, S, q0, qf , s0, δ),

where Q, S, q0, qf , s0 are the same as in Definition 1. δ is a move relation, which
is a subset of (Q× S × S × {−, 0, +} ×Q). Each element of δ is a quintuple of
the form [p, s, s′, d, q]. It means if T5 reads the symbol s in the state p, then write
s′, shift the head to the direction d, and go to the state q.

Again, determinism of T5 can be defined as usual. We say T5 is reversible iff
the following condition holds for any pair of distinct quintuples [p1, s1, s

′
1, d1, q1]

and [p2, s2, s
′
2, d2, q2] in δ.

If q1 = q2, then s′1 �= s′2 ∧ d1 = d2.

Proposition 1. For any RTM T5 in the quintuple form, there is an RTM T4 in
the quadruple form that simulates each step of the former in two steps.

Proof. For T5 = (Q, S, q0, qf , s0, δ), we define T4 = (Q′, S, q0, qf , s0, δ
′) as follows.

Let Q′ = Q ∪ {q′ | q ∈ Q}. The set δ′ is given by the next procedure.
First, set the initial value of δ′ to the empty set. Next, for each q ∈ Q do the

following operation. Let [p1, s1, s
′
1, d1, q], [p1, s2, s

′
2, d2, q], · · · , [pm, sm, s′m, dm, q]

be all the quintuples in δ whose fifth element is q. Note that d1 = d2 = · · · = dm

holds, and s′1, s
′
2, · · · , s′m are pair-wise distinct, because T5 is reversible. Then,

include the m+1 quadruples [p1, s1, s
′
1, q

′], [p1, s2, s
′
2, q

′], · · · , [pm, sm, s′m, q′], and
[q′, /, d1, q] in δ′.

It is easy to see that T4 has the required property. � 



94 K. Morita and Y. Yamaguchi

By Proposition 1, we see the definition of an RTM in the quintuple form is
compatible with that in the quadruple form.

The converse of Proposition 1, i.e., converting an RTM in the quadruple form
to an RTM in the quintuple form, is very easy if we construct the latter RTM
so that it simulates each quadruple by a single quintuple. It is also possible to
simulate a consecutive pair of read/write and shift quadruples by one quintuple,
and thus we can reduce the numbers of states and quintuples.

2.2 Cyclic Tag Systems (CTAGs)

A cyclic tag system (CTAG) is a very simple string rewriting system proposed
by Cook [3]. He showed that a CTAG can simulate a 2-tag system, hence it is
universal.

In the original definition of a CTAG in [3], the notion of halting was not defined
explicitly. In fact, it never halts unless a rewritten string becomes the empty
string ε. In [12], a modified definition of a CTAG with the halting property was
introduced. Here, we employ the latter definition, because we want to construct
a URTM that gives a value of a recursive function when it halts.

Definition 3. A cyclic tag system (CTAG) is defined by

C = (k, {Y, N}, (halt, p1, · · · , pk−1)),

where k (k = 1, 2, · · · ) is the length of a cycle (i.e., period), {Y, N} is the (fixed)
alphabet, and (p1, · · · , pk−1) ∈ ({Y, N}∗)k−1 is a (k−1)-tuple of production rules.
A pair (v, m) is called an instantaneous description (ID) of C, where v ∈ {Y, N}∗
and m ∈ {0, · · · , k − 1}. m is called a phase of the ID. A halting ID is an ID of
the form (Y v, 0) (v ∈ {Y, N}∗). The transition relation ⇒ is defined as follows.
For any (v, m), (v′, m′) ∈ {Y, N}∗ × {0, · · · , k − 1},

(Y v, m) ⇒ (v′, m′) iff [m �= 0] ∧ [m′ = m + 1 modk] ∧ [v′ = vpm],
(Nv, m) ⇒ (v′, m′) iff [m′ = m + 1 modk] ∧ [v′ = v].

A sequence of IDs ((v0, m0), · · · , (vn, mn)) is called a complete computation
starting from v ∈ {Y, N}∗ iff (v0, m0) = (v, 0), (vi, mi) ⇒ (vi+1, mi+1) (i =
0, 1, · · · , n− 1), and (vn, mn) is a halting ID.

The following example shows that a 2-tag system with the halting property is
properly simulated by a CTAG. (Note that the coding and rewriting methods
employed in the following CTAG is the same as in [3]. Only the handling method
of halting is different.)

Example 1. Let T1 = (2, {a0, a1, a2}, {a0 : halt, a1 → a2, a2 → a0a1}) be a
2-tag system (see [7] or [13] for the detail of a 2-tag system). T1 is simulated by
the following CTAG: C1 = (6, {Y, N}, (halt, NNY, Y NN NY N, ε, ε, ε)), where
a0, a1, and a2 in T1 are coded by Y NN, NY N , and NNY in C1.

A computation a2a1 ⇒ a0a1 in T1 is simulated by the following complete
computation in C1: (NNY NY N, 0) ⇒ (NY NY N, 1) ⇒ (Y NY N, 2) ⇒
(NY N Y NN NY N, 3) ⇒ (Y N Y NN NY N, 4) ⇒ (N Y NN NY N, 5) ⇒
(Y NN NY N, 0).



A Universal Reversible Turing Machine 95

3 A 17-State 5-Symbol URTM

We give a URTM(17,5) T17,5 in the quintuple form that simulates any CTAG as
follows:

T17,5 = ({q0, · · · , q16}, {b, Y, N, ∗, $}, q0, b, δ),

where the set δ of quintuples is shown in Table 1.

Table 1. The set of quintuples of the URTM T17,5

b Y N ∗ $

q0 $− q2 $− q1 b − q13

q1 halt Y − q1 N − q1 ∗+ q0 b− q1

q2 ∗ − q3 Y − q2 N − q2 ∗ − q2 null

q3 b+ q12 b + q4 b + q7 b + q10

q4 Y + q5 Y + q4 N + q4 ∗+ q4 $+ q4

q5 b− q6

q6 Y − q3 Y − q6 N − q6 ∗ − q6 $ − q6

q7 N + q8 Y + q7 N + q7 ∗+ q7 $+ q7

q8 b− q9

q9 N − q3 Y − q9 N − q9 ∗ − q9 $ − q9

q10 Y + q10 N + q10 ∗ + q10 $+ q11

q11 Y + q11 N + q11 ∗ + q11 Y + q0

q12 Y + q12 N + q12 ∗ + q12 $ − q3

q13 ∗ − q14 Y − q13 N − q13 ∗ − q13 $− q13

q14 b+ q16 Y − q14 N − q14 b + q15

q15 N + q0 Y + q15 N + q15 ∗ + q15 $+ q15

q16 Y + q16 N + q16 ∗ + q16 $− q14

There are 67 quintuples in total. If a CTAG halts with a halting ID, then
T17,5 halts in the state q1. If the string becomes an empty string, then it halts
in the state q2. In Table 1, it is indicated by “null”.

Fig. 4 shows how the CTAG C1 with the initial string NNY NY N in Exam-
ple 1 is simulated by the URTM T17,5. On the tape of the URTM, the produc-
tion rules (halt, NNY, Y NN NY N, ε, ε, ε) of C1 are expressed by the reversal
sequence over {Y, N, ∗}, i.e., ∗ ∗ ∗NY NNNY ∗ Y NN ∗ ∗ , where ∗ is used as
a delimiter between rules, and “halt” is represented by the empty string. Note
that in the initial tape of T17,5 (t = 0), the rightmost ∗ is replaced by b. This
indicates that the phase is 0. In general, if the phase is i − 1, then the i-th ∗
from the right is replaced by b. This symbol b is called a “phase marker.” On
the other hand, the given initial string for C1 is placed to the right of the rules,
where $ is used as a delimiter.

One step of a rewriting process of a CTAG is simulated by T17,5 as follows.
At first, the first symbol of a rewritten string is read by the state q0 of T17,5. If
the symbol is Y (N , respectively), then T17,5 becomes in the state q1 (q13).



96 K. Morita and Y. Yamaguchi

q0

�

t = 0
The rules of the CTAG C1 A given string

b * * * N Y N N N Y * Y N N * b $ N N Y N Y N b b b b b b b

q15

�

t = 6

b * * * N Y N N N Y * Y N N b * $ b N Y N Y N b b b b b b b

q15

�

t = 23

b * * * N Y N N N Y b Y N N * * $ N b Y N Y N b b b b b b b

q11

�

t = 298

b * * b N Y N N N Y * Y N N * * $ N N $ N Y N Y N N N Y N b

q15

�

t = 335

b * b * N Y N N N Y * Y N N * * $ N N Y b Y N Y N N N Y N b

q11

�

t = 378

b b * * N Y N N N Y * Y N N * * $ N N Y N $ N Y N N N Y N b

q15

�

t = 425

b * * * N Y N N N Y * Y N N * b $ N N Y N Y b Y N N N Y N b

q1

�

t = 434
The final string

b * * * N Y N N N Y * Y N N * b b N N Y N Y N $ N N N Y N b

Fig. 4. Simulating the CTAG C1 in Example 1 by the URTM T17,5. The IDs in the
complete computation (NNY NY N, 0) ⇒ (NY NY N, 1) ⇒ (Y NY N, 2) ⇒
(NY N Y NN NY N, 3) ⇒ (Y N Y NN NY N, 4) ⇒ (N Y NN NY N, 5) ⇒
(Y NN NY N, 0) of C1 appear in the computational configurations of T17,5 at t =
0, 6, 23, 298, 335, 378 and 425, respectively. The symbol $ in the final string (t = 434)
should be regarded as Y .



A Universal Reversible Turing Machine 97

(1) The case that the leftmost symbol is Y .
T17,5 checks if the phase is 0 by using the state q1. If it is the case, it halts in
the state q1. Otherwise, it moves to the left to find the phase marker b using q2.

T17,5 reads each symbol of the i-th rule of the CTAG in the state q3. If it is Y
(N , respectively), it appends this symbol at the end of the string, and returns
back to this position by using the states q4, q5 and q6 (q7, q8 and q9). If it reads
∗, which means that the application of the rule is completed, then it puts the
phase marker there, and goes back to the first symbol of the rewritten string
using the states q10 and q11. If it reads b, which means the end of a cycle, it
moves the phase marker b to the rightmost ∗ using the states q12 and q3, and
then goes back to the first symbol of the string by q10 and q11.
(2) The case that the leftmost symbol is N .
T17,5 moves leftward to find the phase marker in q13, and shifts it to the next
position by q14 (if it detects the end of a cycle, it shifts the phase marker to the
first position by q16). Then, it goes back to the first symbol of the string by q15.

It is easy to see that T17,5 is reversible by checking the set of quintuples shown
in Table 1 according to the definition of an RTM. Intuitively, its reversibility is
guaranteed from the fact that no information is erased in the whole simulation
process. Furthermore, every branch of the program caused by reading the symbol
Y or N is “merged reversibly” by writing the original symbol. For example, the
states q11 and q15 transit to the same state q0 by writing Y and N , respectively,
using the quintuples [q11, $, Y, +, q0] and [q15, b, N, +, q0].

4 Concluding Remarks

In this paper, we studied the problem of finding a small universal reversible
Turing machine (URTM). Here, we constructed a 17-state 5-symbol URTM T17,5

that can simulate any cyclic tag system (CTAG). The product of the numbers of
states and symbols is 85. As far as we tried, it was easier to simulate a CTAG by
a URTM than to simulate a classical 2-tag system. But, it is not known whether
there is a small URTM that simulates any 2-tag system directly.

Though the URTM T17,5 is relatively small, it has many open entry boxes
(i.e., undefined quintuples) as seen in Table 1. But, because of the reversibility
constraint, it is difficult to reduce the number of states of T17,5. For example,
the states q5 and q10 of T17,5 cannot be merged into one state since there are
quintuples [q4, b, Y, +, q5] and [q10, Y, Y, +, q10]. However, we think it will be pos-
sible to reduce the size of a URTM much more by using a new method. Hence,
this study is a start point of finding very small URTMs.

Acknowledgement. The authors express their thanks to Dr. Chuzo Iwamoto
and Dr. Katsunobu Imai of Hiroshima University for their helpful discussions
and useful comments. This work was supported in part by Grant-in-Aid for
Scientific Research (C) No. 16500012 from JSPS.



98 K. Morita and Y. Yamaguchi

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40
(2004)

4. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal
Turing machines. In: Proc. of 47th Symposium on Foundations of Computer Science
(FOCS), pp. 439–446 (2006)

5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253
(1982)

6. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
311–318. Springer, Heidelberg (2002)

7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs (1967)

8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE Japan E-72, 223–228 (1989)

9. Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. Trans. IEICE Japan E-72, 758–762 (1989)

10. Morita, K.: A simple universal logic element and cellular automata for reversible
computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055,
pp. 102–113. Springer, Heidelberg (2001)

11. Morita, K., Ogiro, T.: Simple universal reversible cellular automata in which re-
versible logic elements can be embedded. IEICE Trans. on Information and Sys-
tems E87-D, 650–656 (2004)

12. Morita, K.: Simple universal one-dimensional reversible cellular automata. Journal
of Cellular Automata (in press)

13. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168,
215–240 (1996)

14. Rogozhin, Y.: A universal Turing machine with 22 states and 2 symbols. Romanian
J. Inform. Sci. Technol. 1, 259–265 (1998)

15. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer,
Heidelberg (1980)

16. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Mathe-
matical Systems Theory 14, 12–23 (1981)



P Systems and Picture Languages

K.G. Subramanian

School of Mathematical Sciences, Universiti Sains Malaysia,
11800 Penang, Malaysia
kgsmani1948@yahoo.com

Abstract. Array-rewriting P systems were introduced in [2] linking the
two areas of membrane computing and picture grammars. Subsequently
a variety of P systems with array objects and different kinds of rewriting
has been introduced. Here we discuss a few prominent systems among
these, point out their features and indicate possible problems for future
study.

1 Introduction

In the area of membrane computing, a new computability model, was introduced
by Păun [8] which is inspired by the structure and functioning of living cells. This
is now called P system in honour of its originator. P systems have proved to be
a rich frame work to obtain universality results and study many computational
problems. The basic model processes multi-sets of objects in the regions that are
defined by a hierarchical arrangement of membranes, by evolution rules associ-
ated with the regions. One of the branches of membrane computing is Rewriting
P systems in which objects in the membranes are described by strings and these
strings are processed by rewriting rules or other string manipulating operations.
Universality results have been obtained for a variety of rewriting P systems with
string objects and string rewriting rules.

Recently, these P systems were extended to array objects and array rewriting
rules for describing picture languages in [2] by introducing array-rewriting P
systems and thus linking the two areas of membrane computing and picture
grammars. Subsequently a number of P systems with array objects and different
kinds of rewriting has been introduced. We discuss a few prominent systems
[2,14] among these and point out their salient features. We also indicate possible
directions of study in this area.

2 Basic Definitions

We refer to [10] for unexplained concepts of formal language theory and to [4,9]
for array languages and array grammars. We will also use the intuitive pictorial
representation for arrays.

An alphabet V is a finite set of symbols. A word or string w over V is a
sequence of symbols from V . The set of all words, including the empty word λ
with no symbols, is denoted by V ∗ and V + = V ∗ − λ.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 99–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



100 K.G. Subramanian

The arrays we consider consist of finitely many symbols from a specified alpha-
bet V placed in the points of the plane. The points of the plane not marked with
elements of V are assumed to have the blank symbol # /∈ V . In order to specify
an array, it is sufficient to specify the pixels v of nonblank points, together with
their associated symbols from V . Whenever possible, we will pictorially represent
the arrays, indicating their non-blank pixels. Also we take into account only the
relative positions of non-blank pixels in the array. For example, the L-shaped
angle with equal arms from Figure 1 is formally given by

{((0, 0), m), ((1, 0), c), (2, 0), u), ((3, 0), 0), ((4, 0), 7),

((0, 1), c), ((0, 2), u), ((0, 3), 0), ((0, 4), 7)}

7
0
u
c
m c u 0 7

Fig. 1. L-shaped angle with equal arms

We denote by V +2 the set of all two-dimensional non-empty finite arrays over
V . The empty array is denoted by λ, and then the set of all arrays over V is
V ∗2 = V +2 ∪ {λ}. Any subset of V ∗2 is called an array language.

An array production p over V is of the form p : A −→ B where A and B are
arrays over V . For two arrays C,D over V and a production p as above, we write
C =⇒p D if D can be obtained by replacing a subarray of C identical to A with
B. The reflexive and transitive closure of the relation =⇒ is denoted by =⇒∗.

An array production p = (W,A,B) is called:
1. monotonic, if the symbol positions of A are all contained in B;
2. #-context-free, if there is exactly one nonblank symbol in A;
3. context-free, if it is both monotonic and #-context-free.

The array grammars we consider here are direct extensions of string grammars
to two dimensional pictures [3,9,15,16].

A Chomsky-like array grammar is a construct G = (N, T, #, {((0, 0), S)}, P ),
where N, T are disjoint alphabets of nonterminal symbols and of terminal sym-
bols, respectively, # /∈ N ∪T is the blank symbol, S ∈ N , and P is a finite set of
array rewriting rules A −→ B such that at least one pixel of A is marked with
an element of N ; usually, the axiom array {((0, 0), S)} will be simply written as
S.

An array grammar is monotonic, #-context-free, or context-free if all its rules
are of these types; clearly, in the case of #-context-free and context-free gram-
mars, there is a unique non-blank pixel in the left hand array of each rule, marked
with a nonterminal. Regular array grammar rules are defined as one of the fol-

lowing forms: A # −→ a B, # A −→ B a,
#
A
−→ B

a
,

A
#

−→ a
B

, A −→ a,

where A, B are nonterminals and a is a terminal.



P Systems and Picture Languages 101

The array language generated by G is

L(G) = {A ∈ T ∗2 | {((0, 0), S)} =⇒∗ A}.

The families of array languages generated by arbitrary, monotonic, #-context-
free, context-free, and regular array grammars are denoted by ARE, AMON,
A#CF, ACF, AREG respectively. The following strict inclusions are known:
AREG ⊂ ACF ⊂ AMON ⊂ ARE, ACF ⊂ A#CF ⊂ ARE.

The definition of a matrix array grammar [2] is the obvious extension from
the string case. Such a grammar is a construct G = (N, T, #, S, M), where N is
the nonterminal alphabet, T is the terminal alphabet, # is the blank symbol, S
is the start symbol marking the unique pixel of a start array, and M is a finite set
of matrices (that is, finite ordered sequences) of array productions. The grammar
is regular, context-free or #-context-free, depending on whether all the rules in
its matrices are of these types, respectively. As in the string case, the rules of
a matrix are applied one by one, in the order they appear in the matrix. The
array language generated by a n array matrix grammar G is denoted by AL(G).

Theorem 2.1. [2] Each array language from ARE can be generated by a #-
context-free matrix array grammar. Context-free matrix array grammars are
strictly less powerful.

3 Array-Rewriting P Systems

We first informally describe the basic model of a rewriting string-objects P
system [8]. A rewriting rule used in a string-objects P system is of the form
X −→ u(tar), where X −→ u is a context-free rule and tar ∈ {here, out, in} is
a target indication, indicating the region where the string which is result of the
rewriting should be sent in the next step. here means that the result remains
in the same region where the rule was applied, out means that the string has
to be sent to the region immediately surrounding the region where it has been
produced, and in means that the string should be sent to one of the direct inner
membranes, if any exists. A string can leave the system when a command out
is encountered and this can happen when it is produced in the external or skin
membrane of a system. Each string is processed by at most one rule at a time;
if any rule can be used, then one of them, nondeterministically chosen, is used;
if no rule can rewrite a string, then it remains unchanged. All strings, from all
regions, are rewritten at the same time. A sequence of such steps is called a
computation. A computation yields a result only if it halts and a configuration
of the system is reached where no further rule can be applied. The result of a
computation is the set of strings collected in a specified elementary membrane
in the halting configuration.

We pass on to describe the main object of our discussion, the array P systems
introduced in [2].

The extension from string-objects P systems to array-objects P systems is
immediate: in the compartments of a membrane structure we place arrays, which



102 K.G. Subramanian

evolve by means of array rewriting rules; in each step of a computation one
rule (at most) is applied to each array and the resulting array remains in the
same membrane, exits it, or enters a directly lower membrane, depending on
the target indication associated with the applied rule. The arrays present in a
specified membrane at the end of a halting computation constitute the result of
the computation.

In order to also extend from strings to arrays the universality results known
for string P systems it is necessary to prove a binary normal form for array
matrix grammars. This is accomplished here in two different forms in [2], one for
erasing and one for non-erasing array matrix grammars. Because erasing array
matrix grammars are known to be universal, equivalent in power with arbitrary
array grammars, we obtain the universality of array P systems.

An array-rewriting P system (of degree m ≥ 1)[2] is a construct

Π = (N, T, #, μ, F1, . . . , Fm, R1, . . . , Rm, io),

where: V is the total alphabet, T ⊆ V is the terminal alphabet, # is the blank
symbol, μ is a membrane structure with m membranes labelled in a one-to-one
way with 1, 2, . . . , m, F1, . . . , Fm are finite sets of arrays over V associated with
the m regions of μ, R1, . . . , Rm are finite sets of array rewriting rules over V
associated with the m regions of μ; the rules have attached targets here, out, in
(in general, here is omitted), hence they are of the form A → B(tar); finally, io
is the label of an elementary membrane of μ (the output membrane).

A computation in an array P system is defined in the same way as in a string
rewriting P system with the successful computations being the halting ones:
each array, from each region of the system, which can be rewritten by a rule
associated with that region (membrane), should be rewritten; this means that
one rule is applied (the rewriting is sequential at the level of arrays); the array
obtained by rewriting is placed in the region indicated by the target associated
with the used rule (here means that the array remains in the same region, out
means that the array exit the current membrane – thus, if the rewriting was done
in the skin membrane, then it can exit the system; arrays leaving the system are
“lost” in the environment), and in means that the array is immediately sent to
one of the directly lower membranes, nondeterministically chosen if several exist
there; if no internal membrane exists, then a rule with the target indication in
cannot be used). A computation is successful only if it stops, a configuration is
reached where no rule can be applied to the existing arrays. The result of an
halting computation consists of the arrays composed only of symbols from T
placed in the membrane with label io in the halting configuration. The set of
all such arrays computed (we also say generated) by a system Π is denoted by
AL(Π).

The family of all array languages AL(Π) generated by systems Π as above,
with at most m membranes, with rules of type α ∈ {REG, CF, #CF} is denoted
by EAPm(α); if non-extended systems are considered (that is, we have V = T ;



P Systems and Picture Languages 103

in such a case we ignore the condition to have at least one nonterminal pixel in
the left hand side of rules), then we write APm(α).

Example1. [2] Consider the non-extended context-free system Π1 =

({a}, {a}, #, [1[2[3]3]2]1,
{

a
a

}
, ∅, ∅, R1, R2, R3, 3),

R1 = { #
# a

→ a
# a

(in)},

R2 = {a #
#

→ a a
#

(out), a # #
#

→ a a a
#

(in)},
R3 = ∅.

Starting from the only array initially present in region 1, the two arms of an
L-shaped angle are grown step by step, with one pixel grown in the upper arm
of L in the skin membrane and with one pixel, to the right in membrane 2; at
any moment, from membrane 2 we can send the array to membrane 3 (at that
step two pixels are added to the horizontal arm) and the computation stops.
Thus, AL(Π1) consists of all L-shaped angles with equal arms, each arm being
of length at least three.

We now state the main result of this array P system.

Theorem 3.1. [2] ARE = AP4(#CF ).

The proof of this assertion is done in a similar way as proving the fact that
each string matrix grammar can be simulated by a string P system with four
membranes [8].

We state an auxiliary result.

Lemma 3.1. [2] Given a matrix array context-free grammar in the binary nor-
mal form, an equivalent non-extended context-free array P system can be con-
structed, of degree 4.

4 BPG Array P System

Adapting the techniques of formal string language theory, various types of pic-
ture or array grammars have been introduced and investigated [9,12,11]. Puz-
zle grammars introduced in [7] are array generating two-dimensional grammars
motivated by the problem of tiling the plane. A subclass called basic puzzle
grammars was introduced in [13].

We now recall the definition of basic puzzle grammars introduced in [13].
These grammars constitute a special class of puzzle grammars defined in [7] for
generation of arrays non-rectangular or rectangular.

A basic puzzle grammar (BPG) [13] is a structure G = (N, T, R, S) where
N and T are finite sets of symbols; N ∩ T = ∅; Elements of N are called non-
terminals and elements of T , terminals; S ∈ N is the start symbol or the axiom;
R consists of rules of the following forms:



104 K.G. Subramanian

A −→ a��
��

B , A −→ a��
��

B , A −→ B ��
��

a , A −→ B��
��

a ,

A −→ a��
��

B

, A −→ a

��
��

B
, A −→ B

��
��

a
, A −→ B��

��

a
, A −→ a��

��

where A, B ∈ N and a ∈ T . We may omit the circle in the rule with a single a
on the right side.

Derivations begin with S written in a unit cell in the two-dimensional plane,
with all the other cells containing the blank symbol #, not in N ∪ T . In a
derivation step, denoted ⇒, a non-terminal A in a cell is replaced by the right-
hand member of a rule whose left-hand side is A. In this replacement, the circled
symbol of the right-hand side of the rule used, occupies the cell of the replaced
symbol and the non-circled symbol of the right side occupies the cell to the right
or the left or above or below the cell of the replaced symbol depending on the
type of rule used. The replacement is possible only if the cell to be filled in by
the non-circled symbol contains a blank symbol.

The basic puzzle language (BPL) generated by the BPG G, denoted L(G), is
the set of connected finite arrays over T , derivable in one or more steps from the
axiom. We denote the family of BPL by L(BPL).

We denote by L(RAL) the family of the regular array languages (RAL) gen-
erated by RAGs. It is known [13] that L(RAL) ⊂ L(BPL).

A BPG array P System of degree m(≥ 1)[14] is a construct Π =
(V, T, #, μ, F1, · · · , Fm, R1, · · · , Rm, i0), where V is the total alphabet, T ⊆ V
is the terminal alphabet, # is the blank symbol, μ is a membrane structure with
m membranes labeled in a one-to-one way with 1, 2, · · · , m; F1, · · · , Fm are finite
sets of arrays over V initially associated with the m regions of μ; R1, · · · , Rm

are finite sets of BPG rules over V ∪ T associated with the m regions of μ; the
rules have attached targets, here, out, in (in general, here is omitted); finally, io
is the label of an elementary membrane of μ (the output membrane).

A computation in a BPG array P system is defined in the same way as in a
string rewriting P system [8] with the successful computations being the halting
ones; each array from each region of the system, which can be rewritten by a rule
associated with that region (membrane), should be rewritten; this means that
one rule is applied (the rewriting is sequential at the level of arrays); The array
obtained by rewriting is placed in the region indicated by the target associated
with the rule used; ”here” means that the array remains in the same region,
”out” means that the array exits the current membrane - thus, if the rewriting
was done in the skin membrane, then it can exit the system; arrays leaving
the system are ”lost” in the environment, and ”in” means that the array is
immediately sent to one of the directly lower membranes, non-deterministically
chosen if several exist (if no internal membrane exists, then a rule with the target
indication in cannot be used).



P Systems and Picture Languages 105

A computation is successful only if it stops; a configuration is reached where
no rule can be applied to the existing arrays. The result of a halting computation
consists of the arrays composed only of symbols from T placed in the membrane
with label io in the halting configuration.

The set of all such arrays computed (we also say generated) by a system Π
is denoted by AL(Π). The family of all array languages AL(Π) generated by
systems Π as above, with at most m membranes, is denoted by EAPm(BPG).
The regular array rewriting (REGA) rules are also BPG rules. So when REGA
rules alone are used in the regions, we call the family as EAPm(REGA).

By definition it follows that

1. EAPm(X) ⊆ EAPm+1(X) forX ∈ {REGA, BPG}
2. EAPm(REGA) ⊆ EAPm(BPG)

Theorem 4.1. [14] (i) L(RAL) ⊂ EAP1(REGA)
(ii) L(BPL) ⊂ EAP1(BPG)
(iii) EAP1(REGA) ⊂ EAP1(BPG)
(iv) EAP1(REGA) ⊂ EAP2(REGA)
(v) EAP1(BPG) ⊂ EAP2(BPG)
(vi) EAP2(REGA) ⊂ EAP2(BPG)

5 Array Rewriting Parallel P Systems

The well-known biologically motivated Lindenmayer systems [5] have been ex-
tensively studied establishing deep results during the past several years. Incor-
porating the developmental type of generation used in L-systems into arrays, a
very general model called ECTLA system was proposed by [11]. This study is
one among the several models for picture generation introduced and explored in
the literature, falling under the area of syntactic techniques for Pattern Recogni-
tion and Image Analysis. A new class of array P system called Array Rewriting
Parallel P Systems (APPS), was introduced in [14] generating pictures of rec-
tangular arrays. These systems have tables of rules as in ECTLA systems and
rectangular arrays as objects in the membranes.

A rectangular m× n array M over V is of the form

M =

a11 · · · a1n

...
. . .

...
am1 · · · amn

where each aij ∈ V, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set of all arrays over V is denoted
by V ∗∗, which includes the empty array.

We first recall the notion of Extended Controlled Table L array systems in-
troduced in [11].

An Extended, controlled table 0L− array grammar (ECT 0LA) [11] is a 5−
tuple G = (V, T, ℘, C, S, #) where
# V is a finite nonempty set (the alphabet of G);
# T ⊆ V is the terminal or target alphabet of G;



106 K.G. Subramanian

# ℘ is a finite set of tables, {P1, P2, . . . , Pk}, and each Pi, i = 1, . . . , k, is a left,
right, up, or down table consisting respectively, of a finite set of left, right,
up, or down rules only. The rules within a table are context-free in nature
but all right hand sides of rules within the same table are of the same length;

# C is a control language over ℘; and S �∈ V is the start matrix.
# is an element not in V (the marker of G).

In particular,

(1) if V = T and S is a matrix M0 ( the axiom), G is a controlled table L−
array grammar;
(2) if C = ℘∗, then there is no control and the order of applications of the tables
is arbitrary; G is then an extended table L− array grammar. We shall refer to
this as context-free (or 0L) table array grammar.

Let G = (V, T, ℘, C, S, #) be an ECT 0LA grammar. Let

M1 =

a11 · · · a1n−1 a1n

...
. . .

...
am1 · · · amn−1 amn

, M2 =

a11 · · · a1n−1 ω1n

...
. . .

...
am1 · · · amn−1 ωmn

with aij in V and ωin in V +, i = 1, . . . , m, j = 1, . . . , n. We say that M1 directly
derives M2 (by a right table R in ℘ ) denoted M1 ⇒R M2 if M2 is obtained by
applying in parallel the rules in a right table to all the symbols in the rightmost
column of M1. Similarly we define ⇒L,⇒U ,⇒D corresponding to a left, up,
or down table. We write M1 ⇒ M2 if either M1 ⇒R M2, or M1 ⇒L M2, or
M1 ⇒U M2, or M1 ⇒D M2. We write M0 ⇒∗ M iff there exists a sequence of
derivations M0 ⇒pi1 M1 ⇒pi2 · · · ⇒pin Mn = M , such that Pi1Pi2 · · ·Pin ∈ C.
If necessary, we may use the symbols l, r, u and d above the ⇒, to indicate that
it represents a left , right, up and down derivation step respectively.

A set M(G) of arrays is called an extended controlled table 0L array language
(ECT 0LAL) iff there exists an extended controlled table 0L array grammar
G(ECT 0LAG) such that M(G) = {M/S ⇒∗ M, M ∈ T ++}.

We now take the objects in the array-rewriting P System [2] as rectangular
arrays instead of any array (rectangular or non- rectangular ). Also we take
tables of context free rules of the form a → α, α ∈ V ∗ in the regions of the P
system. We call the resulting array P system as Array - rewriting Parallel P
system (APPS).

An Array - rewriting Parallel P system (APPS)[14] is a construct
Π1 = (V, T, #, μ, F1, · · · , Fm, R1, · · · , Rm, i0), where

# V is the total alphabet, T ⊆ V the terminal alphabet.
# μ is a membrane structure with m membranes labelled in a one to one way

with 1, 2, , m.
# F1, · · · , Fm are finite sets of rectangular arrays over V associated with the

m regions of μ.



P Systems and Picture Languages 107

# R1, · · · , Rm are finite sets of tables of context free rules over V of the form
a → α, a ∈ V, α ∈ V ∗ and all α

′
s have the same length in a table associated

with m regions of μ.
# the tables have attached targets here, out, in
# i0 is the label of an elementary membrane of μ (output membrane).

When a set T is distinguished, we speak about an extended P system, when
V = T we have a non-extended system.

A computation in an array-rewriting parallel P system is defined analogous
to a string rewriting P system with the successful computations being the halt-
ing ones: each rectangular array, from each region of the system, which can be
rewritten by a table of rules associated with that region (membrane), should
be rewritten and the rewriting is as in an ECT0LA grammar; when a table
is applied, the rectangular array obtained by rewriting is placed in the region
indicated by the target associated with the table used; (here means that the
array remains in the same region, out means that the array exits the current
membrane - thus , if the rewriting was done in the skin membrane, then it can
exit the system ; arrays leaving the system are ”lost ” in the environment, and in
means that the array is immediately sent to one of the directly lower membranes,
nondeterministically chosen if several exist. If no internal membrane exists, then
a rule with the target indication in cannot be used).

A computation is successful only if it stops, a configuration is reached where
no table can be applied to the existing rectangular arrays. The result of a halt-
ing computation consist of the arrays composed only of symbols from T placed
in the membrane with label i0 in the halting configuration. The set of all such
arrays computed by a system Π is denoted by RAL(Π). The family of all array
languages RAL(Π) generated by systems Π as above, with at most m mem-
branes, is denoted by RAPm; if non- extended systems are considered, then we
write REAPm. We now state the results [14] relating to these systems.

5.1 Theorem

(i) RAPm ⊆ RAPm+1 for m ≥ 1.
(ii) REAPm ⊆ REAPm+1 for m ≥ 1.
(iii) RAPm ⊆ REAPm for m ≥ 1.

5.2 Theorem

(i) The family of array languages generated by Tabled L array systems is
included in RAP1

(ii) The family of array languages generated by Extended Tabled L array sys-
tems is included in REAP1

(iii) The family of array languages generated by Tabled L array systems is
properly included in RAP3

(iv) The family of array languages generated by Extended Tabled L array sys-
tems is properly included in REAP3



108 K.G. Subramanian

5.3 Theorem

The family of array languages generated by Regular controlled Tabled L array
systems and context free Tabled L array systems intersects the family of array
languages generated by array-rewriting parallel P systems.

6 Conclusion

The matrix array grammars with context-free rules are not more powerful than
array-rewriting P systems [2] with context-free rules. The following problems
thus remain open: Can any array P system with context-free rules be simulated
by a matrix array grammar with context-free rules ? What is the power of array
P systems with regular rules?

Among several variationsofP systems,with string-objects and string-processing
rules, conditional communication is a feature introduced in [1]. Incorporating the
feature of conditional communication in array-rewriting P systems of [2] array-
rewriting P system with conditional communication, has been introduced in [6].
This system can generate all solid rectangles and all solid squares over a single let-
ter which is not possible in [2]. It will be interesting to examine the power of these
systems.

Acknowledgement. The author is grateful to Prof. Dr Rosihan M. Ali for his
interest and academic support and to Universiti Sains Malaysia for their finan-
cial support.

References

1. Bottoni, P., Labella, A., Martin-vide, C., Păun, G.: Rewriting P Systems with
Conditional Communication. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa,
A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 325–353. Springer,
Heidelberg (2002)

2. Ceterchi, R., Mutyam, M., Paun, G., Subramanian, K.G.: Array - rewriting P
systems. Natural Computing 2, 229–249 (2003)

3. Cook, C.R., Wang, P.S.-P.: A Chomsky hierarchy of isotonic array grammars and
languages. Computer Graphics and Image Processing 8, 144–152 (1978)

4. Freund, R.: Array Grammars, Technical Rep. 15/00, Research Group on Mathe-
matical Linguistics, Rovira i Virgili University, Tarragona, 164 pages (2000)

5. Herman, G., Rozenberg, G.: Developmental Systems and languages. North -
Holland, Amsterdam (1975)

6. Hemalatha, S., Dersanambika, K.S., Subramanian, K.G., SriHariNagore, C.: Array-
Rewriting P systems with Conditional Communication. Paper presented at IIT,
Madras (2006)

7. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Dare, V.R.: Puzzle
Grammars and Context-free Array Grammars. Int. Journal of Pattern Recogni-
tion and Artificial Intelligence 5, 663–676 (1991)



P Systems and Picture Languages 109

8. Păun, G.: Computing with Membranes: An Introduction. Springer, Heidelberg
(2002)

9. Rosenfeld, A.: Picture Languages. Academic Press, Reading, MA (1979)
10. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
11. Siromoney, R., Siromoney, G.: Extended Controlled Tabled L- arrays. Information

and Control 35(2), 119–138 (1977)
12. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of Matrice and

Picture languages. Computer Graphics and Image Processing 1, 234–307 (1972)
13. Subramanian, K.G., Siromoney, R., Dare, V.R., Saoudi, A.: Basic Puzzle Lan-

guages. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 763–775
(1995)

14. Subramanian, K.G., Saravanan, R., Geethalakshmi, M., Helenchandra, P., Margen-
stern, M.: P Systems with array objects and array rewriting rules. In: Proceedings
of Bio-inspired Computing: Theory and Applications, China (2006)

15. Wang, P.S.-P.: Some new results on isotonic array grammars. Information Process-
ing Letters 10, 129–131 (1980)

16. Yamamoto, Y., Morita, K., Sugata, K.: Context-sensitivity of two-dimensional reg-
ular array grammars. In: Wang, P.S.-P. (ed.) Array Grammars, Patterns and Recog-
nizers. WSP Series in Computer Science, vol. 18, pp. 17–41. World Scientific Publ.,
Singapore (1989)



Partial Halting in P Systems Using

Membrane Rules with Permitting Contexts

Artiom Alhazov1, Rudolf Freund2, Marion Oswald2, and Sergey Verlan3

1 Department of Information Technologies, Abo Akademi University
Turku Center for Computer Science, FIN-20520 Turku, Finland

and
Institute of Mathematics and Computer Science

Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028, Moldova

aalhazov@abo.fi, aartiom@math.md
2 Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria
{rudi,marion}@emcc.at

3 LACL, Département Informatique, UFR Sciences et Technologie
Université Paris XII, 61, av. Général de Gaulle, 94010 Créteil, France

verlanuniv-paris12.fr

Abstract. We consider a new variant of the halting condition in P sys-
tems, i.e., a computation in a P system is already called halting if not for
all membranes a rule is applicable anymore at the same time, whereas
usually a computation is called halting if no rule is applicable anymore
in the whole system. This new variant of partial halting is especially in-
vestigated for several variants of P systems using membrane rules with
permitting contexts and working in different derivation modes.

Keywords: computational completeness, halting, minimal parallelism,
P systems, permitting context.

1 Introduction

In the first papers of Gheorghe Păun (e.g., see [17], [10]) introducing membrane
computing, membrane systems were introduced as systems with a hierarchical
(tree-like) structure and the rules being applied in a maximally parallel manner;
the results were taken as the contents of a specified output membrane in the final
configurations of halting computations, i.e., at the end of computations to which
no rule was applicable anymore. In this paper, we continue the investigation
of the new variant of halting – partial halting –, first introduced [12], i.e., we
consider a computation to halt as soon as no multiset of rules containing at least
one rule from each set of rules assigned to the membranes is applicable anymore
(partial halting), which reflects the idea that a (biological) system only stays
alive as long as all its main components are still able to evolve in parallel.

Moreover, we especially also consider the derivation mode of minimal paral-
lelism (e.g., see [8]), i.e., for each membrane, at least one rule – if possible – has

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 110–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Partial Halting in P Systems 111

to be applied, but it is not required to use a maximal multiset of rules. Finally,
in the asynchronous derivation mode an arbitrary number of rules can be ap-
plied in parallel, and in the sequential derivation mode exactly one rule has to
be applied in each computation step.

In the following, we elaborate some general results for the new stopping
mode of partial halting and in more detail investigate P systems using mem-
brane rules with permitting contexts such as antiport P systems and evolu-
tion/communication P systems together with partial halting and with the dif-
ferent derivation modes, especially for the newly introduced variant of minimal
parallelism. Above all we prove that P systems using membrane rules with per-
mitting contexts together with partial halting can only generate semilinear sets
of non-negative integers.

2 Definitions

In this section, we first recall some basic notions and notations and then give
precise definitions for matrix grammars, register machines, and a general model
of P systems using membrane rules with permitting contexts as they are con-
sidered in this paper; moreover, we show how several well-known models of P
systems (P systems with symport/antiport rules, evolution/communication P
systems) can be interpreted as special variants of this general model.

2.1 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to [9] and [21]. We just list a few notions and notations: N denotes the
set of non-negative integers. V ∗ is the free monoid generated by the alphabet V
under the operation of concatenation and the empty string, denoted by λ, as unit
element; by NRE and NREG we denote the family of recursively enumerable
sets and regular sets of non-negative integers, respectively.

Let V = {a1, ..., an} be an arbitrary alphabet; the number of occurrences of
a symbol ai in x is denoted by |x|ai

; the Parikh vector associated with a string
x ∈ V ∗ with respect to (a1, ..., an) is

(
|x|a1

, ..., |x|an

)
. The Parikh image of a

language L ⊆ V ∗ with respect to (a1, ..., an) is the set of all Parikh vectors of
strings in L. For a family of languages F, the family of Parikh images of languages
in F is denoted by PsF. A (finite) multiset 〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N,
1 ≤ i ≤ n, can be represented by any string x the Parikh vector of which with
respect to (a1, ..., an) is (m1, ..., mn).

The family of recursively enumerable languages is denoted by RE, the family
of context-free and regular languages by CF and REG, respectively. The cor-
responding families of languages over a k-letter alphabet are denoted by X (k) ,
X ∈ {RE, CF, REG}; for k = 1 we obtain PsX (1) = NX and, moreover,
NREG = NCF .



112 A. Alhazov et al.

2.2 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N, T, S, M) where N and T are sets of non-terminal and terminal symbols,
respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = (mi,1, . . . , mi,ni), ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N, T ). For mi = (mi,1, . . . , mi,ni) and v, w ∈
(N ∪ T )∗ we define v =⇒mi w if and only if there are w0, w1, . . . , wni ∈ (N ∪ T )∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )∗ , mij ∈ M for 1 ≤ j ≤ k, k ≥ 1
}

.

The family of languages generated by matrix grammars without appearance
checking (over a one-letter alphabet) is denoted by MAT λ (MAT λ (1)). It is
known that CF ⊂ MAT λ ⊂ RE as well as PsCF ⊂ PsMAT λ ⊂ PsRE, and
especially NREG = NCF = PsMAT λ (1) ⊂ NRE. For further details about
matrix grammars we refer to [9] and to [21].

2.3 Register Machines

An n-register machine is a construct M = (n, B, P, l0, lh) , where n is the number
of registers, B is a set of labels for injectively labelling the instructions in P ,
l0 is the initial/start label, and lh is the final label. The instructions are of the
following forms:

– p : (A (r) , q, s) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) q and s.

– p : (S (r) , q, s) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to in-
struction q, otherwise proceed to instruction s.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, . . . , sβ) of natural numbers if, starting with the instruction with label l0
and all registers containing the number 0, the machine stops (it reaches the in-
struction lh : halt) with the first β registers containing the numbers s1, . . . , sβ

(and all other registers being empty).
Without loss of generality, in the succeeding proofs we will assume that in

each ADD instruction p : (A (r) , q, s) ∈ P and in each SUB instruction p :
(S (r) , q, s) ∈ P the labels p, q, s are mutually distinct (for a proof see [14]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of non-negative integers which can be generated by Turing machines,
i.e., the family PsRE. The following result is well known (e.g., see [15], [11]):



Partial Halting in P Systems 113

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β + 2
being empty, M non-deterministically computes and halts with ni in registers i,
1 ≤ i ≤ β, and registers β+1 and β+2 being empty if and only if (n1, ..., nβ) ∈ L.
Moreover, the registers 1 to β are never decremented.

2.4 A General Model of P Systems with Permitting Contexts

We now introduce a general model of P systems with permitting contexts cov-
ering the most important models of communication P systems as well as evolu-
tion/communication P systems. For the state of the art in the P systems area,
we refer to the P systems web page [23].

A P system (of degree d, d ≥ 1) with permitting contexts (in the following
also called P system for short) is a construct

Π = (V, T, E, μ, w1, . . . , wd, R1, . . . , Rd, io) where

1. V is an alphabet; its elements are called objects ;
2. T ⊆ V is an alphabet of terminal objects ;
3. E ⊆ V is the set of objects occurring in an unbounded number in the

environment;
4. μ is a membrane structure consisting of d membranes (usually labelled with

i and represented by corresponding brackets [i and ]i, 1 ≤ i ≤ d);
5. wi, 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of μ;

they represent multisets of objects initially present in the regions of μ;
6. Ri, 1 ≤ i ≤ d, are finite sets of membrane rules with permitting contexts

over V associated with the membranes 1, 2, . . . , d of μ; these evolution rules
in Ri are of the form u

w [x
z →

v
w [y

z , where w, z ∈ V ∗ are the contexts in the
region outside membrane i and inside membrane i, respectively, u outside
membrane i is replaced by v and x inside membrane i is replaced by y;

7. io, 1 ≤ io ≤ d, specifies the output membrane of Π .

The rule u
w [x

z → v
w [y

z from Ri is applicable if and only if the multiset uw
occurs in the region outside membrane i (in the following also denoted by ı̂ )
and the multiset xz occurs in the region inside membrane i. The application of
this rule results in subtracting the multiset identified by u from the multiset in
ı̂ and adding v instead as well as subtracting x and adding y in the region inside
membrane i. Instead of writing u

w [x
z →

v
w [y

z ∈ Ri we can also write u
w [i

x
z →

v
w [i

y
z

and in this way collect all rules from the Ri, 1 ≤ i ≤ d, in one single set of
rules R =

{
u
w [

i

x
z →

v
w [

i

y
z |

u
w [x

z →
v
w [y

z ∈ Ri

}
. The membrane structure and the

multisets represented by wi, 1 ≤ i ≤ d, in Π constitute the initial configuration
of the system.

In the maximally parallel derivation mode, a transition from one configuration
to another one is obtained by the application of a maximal multiset of rules, i.e.,
no additional rules could be applied anymore. The system continues maximally
parallel derivation steps until there remain no applicable rules in any region of



114 A. Alhazov et al.

Π ; then the system halts (total halting). We consider the number of objects
from T contained in the output membrane io at the moment when the system
halts as the result of the underlying computation of Π yielding a vector of non-
negative integers for the numbers of terminal symbols in the output membrane
i0; observe that here we do not count the non-terminal objects present in the
output membrane. The set of results of all halting computations possible in Π is
denoted by Ps (Π), respectively. Below, we shall consider variants of P systems
using only rules of very restricted types α. The family of all sets of vectors of
non-negative integers computable by P systems with d membranes and using
rules of type α is denoted by PsgOPd (α, max, H).

When using the minimally parallel derivation mode (min), in each derivation
step we choose a multiset of rules from the Ri, 1 ≤ i ≤ d, in such way that
this chosen multiset includes at least one rule from every set of rules contain-
ing applicable rules. In the asynchronous (asyn) and the sequential derivation
mode ( sequ), in each derivation step we apply an arbitrary number of rules/
exactly one rule, respectively. The corresponding families of sets of vectors of
non-negative integers generated by P systems with d membranes and using rules
of type α are denoted by PsgOPd (α, X, H), X ∈ {min, asyn, sequ}.

If instead of the total halting we take partial halting, i.e., computations halting
as soon as no multiset of rules containing at least one rule from each set of rules
assigned to the membranes is applicable anymore, the corresponding families are
denoted by PsgOPd (α, X, h), X ∈ {max, min, asyn, sequ}.

All these variants of P systems can also be considered as accepting devices,
the input being given as the numbers of objects in the distinguished membrane
i0. The corresponding families of sets of vectors of non-negative integers ac-
cepted by P systems with d membranes and using rules of type α are denoted
by PsaOPd (α, X, Y ), X ∈ {max, min, asyn, sequ}, Y ∈ {H, h}. In this case, it
also makes sense to consider deterministic P systems, i.e., systems where for each
configuration obtained in this system we can derive at most one configuration.
The corresponding families are denoted by DPsaOPd (α, X, Y ).

If we only count the number of terminal objects and do not distinguish be-
tween different (terminal) objects, in all the definitions given above, we replace
Ps by N . When the parameter d is not bounded, it is replaced by ∗.

In the following, we now consider several restricted variants of membrane rules
with permitting contexts well known from the literature.

P systems with symport/antiport rules. For definitions and results con-
cerning P systems with symport/antiport rules, we refer to the original paper
[16] as well as to the overview given in [20]. An antiport rule is a rule of the form
u [x → x [u usually written as (x, out; u, in), ux �= λ. A symport rule is of the
form [x → x [ or u [ → [u usually written as (x, out), x �= λ, or (u, in), u �= λ,
respectively.

The weight of the antiport rule (x, out; u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type α usually written as antik. The
weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|, respectively.
Using only symport rules with weight k induces the type α usually written as



Partial Halting in P Systems 115

symk. If only antiport rules (x, out; u, in) of weight ≤ 2 and with |x| + |u| ≤ 3
as well as symport rules of weight 1 are used, we shall write anti2′ .

P systems with conditional uniport rules. A conditional uniport rule is a
rule of one of the forms ab [ → b [a , [ab → a [ b , a [ b → [ab , b [a → ab [ , with
a, b ∈ V ; in every case, the object a is moved across the membrane, whereas the
object b stays where it is. Using only rules of that kind induces the type uni1,1.
Conditional uniport rules were first considered in [22] for the case of tissue
P systems, showing computational completeness with maximal parallelism and
total halting (using 24 cells).

P systems with boundary rules and evolution/communication P sys-
tems. In P systems with boundary rules as defined in [5], evolution rules as
well as communication rules with permitting contexts are considered. Usually,
we only consider evolution rules that are non-cooperative, i.e., of the form a → v
with a ∈ V and v ∈ V ∗; a rule a → v ∈ Ri corresponds to [a → [v ∈ Ri in
our general notation. The communication rules are symport or antiport rules
with permitting contexts, i.e., of the form u

w [x
z →

x
w [u

z . In [6], boundary rules of
the form u [x → v [y are considered, i.e., rewriting on both sides of the mem-
brane. In evolution/communication P systems as introduced in [7], we allow
non-cooperative evolution rules as well as antiport (of weight k) and symport
rules (of weight l), and we denote this type of rules by (ncoo, antik, syml).

3 Results

After recalling some general results for the new variant of partial halting already
established in [12], which immediately yield comparable computational com-
pleteness results in the case of antiport P systems for total and partial halting,
we prove that working in the asynchronous or in the sequential derivation mode
we can only obtain Parikh sets of matrix languages (regular sets of non-negative
integers) with partial halting as with total halting. Moreover, antiport P systems
working in the minimally parallel derivation mode with partial halting only yield
Parikh sets of matrix languages (regular sets), too.

3.1 General Observations

Looking carefully into the definitions of the derivation modes as well as the
halting modes explained above, we observe the following general results already
established in [12]:

Theorem 1. Any variant of P systems yielding a family of sets of non-
negative integers F when working in the derivation mode X, X ∈
{max, min, asyn, sequ}, with only one set of rules assigned to a single mem-
brane and stopping with total halting yields the same family F when working in
the derivation mode X with only one set of rules assigned to a single membrane
when stopping with partial halting, too.



116 A. Alhazov et al.

Theorem 2. Any variant of P systems yielding a family of sets of non-negative
integers F when working in the derivation mode X, X ∈ {asyn, sequ}, with only
one set of rules assigned to a single membrane and stopping with total or partial
halting, respectively, yields the same family F when working in the minimally
parallel derivation mode and stopping with the corresponding halting mode, too.

For any P system using rules of type α, with a derivation mode X , X ∈
{min, asyn, sequ}, and partial halting, we only get Parikh sets of matrix lan-
guages (regular sets of non-negative integers):

Theorem 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (α, X, h) ⊆ PsMAT λ and NgOP∗ (α, X, h) ⊆ NREG.

Proof. We only prove PsgOP∗ (α, X, h) ⊆ PsMAT λ; the second inequality
NgOP∗ (α, X, h) ⊆ NREG is a direct consequence of the first one, having
in mind that NREG = PsMAT λ (1). Hence, let us start with a P system
Π = (V, T, E, μ, w1, . . . , wd, R1, . . . , Rd, io) using rules of a specific type α,
working with the derivation mode X . The stopping condition h – partial
halting – then guarantees that in order to continue a derivation there must
exist a sequence of rules 〈r1, . . . , rd〉 with ri ∈ Ri, 1 ≤ i ≤ d, such that all
these rules are applicable in parallel. We now consider all functions δ with
δ (i, r) ∈ {0, 1} and δ (i, r) = 1 if and only if the rule r ∈ Ri, 1 ≤ i ≤ d, is
assumed to be applicable to the current sentential form in a matrix grammar
GM =

(
VM , T , S, M

)
generating representations of all possible configurations

computable in the given P system Π with the representation of an object a
in membrane i as (i, a). We start with the matrix (S → Kh (w)) where h (w)
is a representation of the initial configuration. A derivation step in Π then is
simulated in GM as follows:

(i) We non-deterministically choose some δ as described above and use the
matrix (K → K (δ)). Afterwards, we use the matrix (K (δ) → K ′ (δ) , s1, ..., sm)
where each subsequence sj , 1 ≤ j ≤ m, checks the applicability of
a rule r ∈ Ri with δ (i, r) = 1. For checking the applicability of
u
w [x

z → v
w [y

z ∈ Ri, we have to check for the appearance of uw in mem-
brane ı̂ (the outer region of membrane i) and for the appearance of xz
in the (inner) region of membrane i. This can be done by the subse-
quence ((̂ı, uw) → (ı̂, uw) , (̂ı, uw) → (̂ı, uw) , (i, xz) → (i, xz) , (i, xz) → (i, xz)),
where (i, v) → (i, v), for v = v1...vh, vj ∈ V , 1 ≤ j ≤ h, h ≥ 0, is a short-
cut for the sequence ((i, v1) → (i, v1) , ..., (i, vh) → (i, vh)) etc.

(ii) After that, we non-deterministically guess a sequence of rules 〈r1, . . . , rd〉
with ri ∈ Ri, ri = u(i)

w(i)
[x(i)
z(i)

→ v(i)
w(i)

[y(i)
z(i)

, and δ (i, ri) = 1, 1 ≤ i ≤ d,
such that all these rules are applicable in parallel. This can be checked by
the corresponding matrix (K ′ (δ) → K ′′ (δ) , t1, ..., td, t

′
1, ..., t

′
d) with the sub-

sequences ti, t′i, 1 ≤ i ≤ d, being defined (in the shortcut notation
as above) by ti =

(
(ı̂, u (i)) →

(
ı̂, u (i)

)
, (i, x (i)) →

(
i, x (i)

))
and t′1 =((

ı̂, u (i)
)
→ (̂ı, u (i)) ,

(
i, x (i)

)
→ (i, x (i))

)
. Observe that only the objects in



Partial Halting in P Systems 117

u (i) and x (i) are assigned to the rule ri, whereas the permitting contexts w (i)
and z (i) may be contexts for another rule or be affected themselves by another
rule, and, moreover, that the applicability of the rules themselves has already
been checked in (i).

(iii) Finally, we take different matrices depending on the derivation mode:

In the sequential derivation mode, we only have to take all possible matri-
ces simulating the application of one rule u

w [x
z → v

w [y
z ∈ Ri with δ (i, r) = 1:

(K ′′ (δ) → Khı̂ (v) hi (y) , (̂ı, u) → λ, (i, x) → λ), where the morphisms hj are de-
fined by hj (a) = (j, a), 0 ≤ j ≤ d, a ∈ V , except h0 (a) = λ for a ∈ E.

In the asynchronous derivation mode, we have to allow an arbitrary num-
ber of rules to be applied in parallel; we simulate the application of rules se-
quentially, priming the results such that they cannot be used immediately. Fi-
nally, if for the current derivation step, the application of no further rule is
intended, we can deprime the result symbols to be available for the simulation
of the next derivation step. In sum, we use the matrices (K ′′ (δ) → K ′′′ (δ)),
(K ′′′ (δ) → K ′′′ (δ)h′

ı̂ (v) h′
i (y) , (̂ı, u) → λ, (i, x) → λ) – where the morphisms h′

j

are defined by h′
j (a) = (j, a′), 0 ≤ j ≤ d, a ∈ V , except h′

0 (a) = λ for a ∈ E –
for every rule u

w [x
z → v

w [y
z ∈ Ri with δ (i, r) = 1, as well as

(
K ′′′ (δ) → K (δ)

)
,(

K (δ) → K (δ) , (j, a′) → (j, a)
)
, 0 ≤ j ≤ d, a ∈ V , and finally

(
K (δ) → K

)
.

For the minimally parallel mode, instead of (K ′′ (δ) → K ′′′ (δ)) as
in 2, we simulate the application of a sequence of rules 〈r1, . . . , rd〉
with ri = u(i)

w(i) [
x(i)
z(i) → v(i)

w(i) [
y(i)
z(i) , ri ∈ Ri, 1 ≤ i ≤ d, and

δ (i, ri) = 1 such that all these rules are applicable in parallel, which
is accomplished by the matrix

(
K ′′ (δ) → K ′′′ (δ)h′

1̂
(v)h′

1 (y) ...h′
d̂
(v)h′

d (y) ,(
1̂, u (1)

)
→ λ, (1, x (1)) → λ, ...,

(
d̂, u (d)

)
→ λ, (d, x (d)) → λ

)
.

As a technical detail we have to mention that it does not matter whether all
the primed symbols are deprimed again, this would just make them unavailable
during the next steps. Any sentential form containing primed symbols is consid-
ered to be non-terminal, hence, it cannot contribute to L (GM ). Moreover, every
symbol e ∈ E from the environment being available there in an unbounded
number neither needs to be checked for appearance in 1̂ ( = 0) nor to be gen-
erated/eliminated or primed/deprimed, i.e., rules like (0, e) → λ, (0, e) → (0, e),
(0, e) → (0, e) have to be omitted.

Finally, we may stop the simulation of computation steps of Π and use the
matrices (K → F ), (F → F, (i, a) → (i, a)) for every object a and every mem-
brane i, and the final matrix (F → λ) for generating a terminal string of GM .

Now, we have to extract the representations of final configurations from
L (GM ): For every possibility of choosing a sequence of rules 〈r1, . . . , rd〉 with
ri ∈ Ri, 1 ≤ i ≤ d, such that all these rules are applicable in parallel, we con-
struct a regular set checking for the applicability of this sequence in any possible
representation of configurations of Π ; then we take the union of all these regular
sets and take its complement thus obtaining a regular set R. In L (GM ) ∩R we
then find at least one representation for every final configuration of computations
in Π , but no representation of a non-final configuration.



118 A. Alhazov et al.

Finally, let g be a projection with g ((i, a)) = λ for every i �= i0 as well as
g ((i0, a)) = λ for a ∈ V � T and g ((i0, a)) = a for a ∈ T . Due to the closure
properties of MAT λ, we obtain Ps (g (L (GM ) ∩R)) = Ps (Π) ∈ PsMAT λ.

3.2 Results for Symport/Antiport Systems

The following results are well known (e.g., see [18]; for an overview of actual
results also see [20]):

Theorem 4. PsgOP1 (anti2′ , max, H) = DPsaOP1 (anti2′ , max, H) = PsRE.

Theorem 5. For every X ∈ {asyn, sequ},
PsgOP∗ (anti∗, X, H) = PsgOP1 (anti2′ , X, H) = PsMAT λ and
NgOP∗ (anti∗, X, H) = NgOP1 (anti2′ , X, H) = NREG .

Recently, NgOP3 (anti2, min, H) = NRE was shown in [8]; we shall improve
this result by showing that only two membranes are needed:

Theorem 6. PsgOP2 (anti2′ , min, H) = PsRE.

Proof. We only give a sketch of the proof, because the basic ideas are the same as
in the usual proofs showing computational completeness for antiport P systems.
Now let M = (n, B, P, l0, lh) be a register machine generating an output vector
of dimension k ( ≤ n); then we construct the P system

Π = (V, T, V, [1 [2 ]2 ]1 , l0, ZX, R1, R2, 2) ,
V = {p, p′, p′′, p′′′, p̃, p̃′, p̃′′, p̄, p̄′, p̄′′ | p ∈ B}

∪ {X, Y, Z, Z ′} ∪ {Ai | 1 ≤ i ≤ n} ,
T = {Ai | 1 ≤ i ≤ k} ,
R1 = R1,A ∪R1,S ∪R1,F ,
R1,A = {(p, out; Arq, in) , (p, out; Ars, in) | p : (A (r) , q, s) ∈ P} ,
R1,S = {(p, out; p′p′′, in), (p′′Ar, out; p′′′, in), (p′′X, out; p̄, in),

(p′′′X, out; p̃, in), (p̄, out; p̄′X, in), (p̄′, out; p̄′′Y, in),
(p̄′′, out; s, in), (p̃, out; p̃′X, in), (p̃′, out; p̃′′Y, in),
(p̃′′, out; q, in) | p : (S (r) , q, s) ∈ P} ,

R1,F = {(p′Y, out; Z ′, in) | p ∈ B � {lh}} ∪ {(Z ′, out) , (ZX, out; Z ′, in)} ,
R2 = R2,A ∪R2,S ∪R2,F ,
R2,A = {(Ai, in) | 1 ≤ i ≤ k} ,
R2,S = {(X, out; p′, in) | p ∈ B � {lh}} ∪ {(Z, out; XY, in) , (Z, in)} ,
R2,F = {(p′Y, out; lh, in) | p ∈ B � {lh}} ∪ {(ZX, out; lh, in) , (lh, out)} .

An ADD instruction p : (A (r) , q, s) ∈ P is simulated by using one of the
rules (p, out; Arq, in), (p, out; Ars, in) assigned to membrane 1; in case r is an out-
put register, the terminal symbol Ar is moved into the output region 2 by using
(Ar, in) from R2. A SUB instruction p : (S (r) , q, s) ∈ P is simulated by using
the rules from R1,S and R2,S in parallel. The final procedure in Π starts when the
final label lh appears; as the number of symbols p′ equals the number of symbols Y
as they have been introduced when simulating a SUB instruction, we finally elim-
inate pairs p′Y from the system using the rules from R1,F and R2,F until finally



Partial Halting in P Systems 119

only lh remains in the skin membrane and the desired output is found in the sec-
ond membrane region, without any additional symbols remaining there anymore.

The general result in Theorem 1 and the special result in Theorem 4 immediately
yield the following one:
Corollary 1. PsgOP1 (anti2′ , max, h) = DPsaOP1 (anti2′ , max, h) = PsRE.

With the other derivation modes and partial halting, we only get Parikh sets of
matrix languages (regular sets of non-negative integers), which is an immediate
consequence of Theorem 3:
Corollary 2. For every X ∈ {min, asyn, sequ},

PsgOP∗ (anti∗, X, h) = PsgOP1 (anti2′ , X, h) = PsMAT λ and
NgOP∗ (anti∗, X, h) = NgOP1 (anti2′ , X, h) = NREG.

For symport rules, the following result is known (e.g., see [20]):

Theorem 7. PsgOP2 (sym2, max, H) = PsaOP2 (sym2, max, H) = PsRE.

In [4] we show that computational completeness can also be obtained with mini-
mal parallelism and total halting, whereas as a direct consequence of Theorem 3,
we only get Parikh sets of matrix languages (regular sets of non-negative inte-
gers) with partial halting:
Theorem 8. PsgOP2 (sym3, min, H) = PsRE.

Corollary 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (sym∗, X, h) = PsMAT λ and NgOP∗ (sym∗, X, h) = NREG.

3.3 Results for P Systems with Conditional Uniport Rules

Using only conditional uniport rules of type uni1,1, we again obtain computa-
tional completeness, even with the minimally parallel derivation mode, together
with total halting (a proof for this result can be found in [4]), whereas, as a
direct consequence of Theorem 3, with partial halting we only get Parikh sets
of matrix languages (regularsets of non-negative integers) with the minimally
parallel derivation mode.
Theorem 9. PsgOP13 (uni1,1, X, H) = PsRE, for every X ∈ {min, max}.

3.4 Results for Evolution/Communication P Systems

For evolution/communication P systems, the constructions from [2], Theorems
1 and 2, and from [3], Theorems 4.3.1 and 4.3.2, already show the computational
completeness, using two membranes, for the minimally parallel setup (when
working in the maximally parallel way, the system never applies simultaneously
more than one rule from the same set of rules assigned to a membrane):

Corollary 4. PsgOP2 ((ncoo, anti1, sym1) , X, H) = PsRE, X ∈ {min, max}.
We can extend these results by showing that deterministic evolution-
communication P systems with non-cooperative evolution rules and communica-
tion rules of weight one (also see [1]) are computationally complete, using three
membranes (for a proof, see [4]).



120 A. Alhazov et al.

Theorem 10. For X ∈ {min, max},
DPsaOP3((ncoo, sym1, anti1) , X, H) = PsRE.

4 Conclusion

In this paper, we have investigated a new variant of halting – we call it partial
halting – in membrane systems where all membranes are required to allow for the
application of a rule at the same time in order to keep a computation alive. Obvi-
ously, for systems with only one membrane this way of halting is equivalent with
the original one where a system halts if and only if no rule is applicable anymore
in the whole system – we also call this total halting. Besides this general result,
we also have shown that P systems working in the minimally parallel mode, the
asynchronous or the sequential derivation mode and with partial halting can only
generate Parikh sets of matrix languages/regular sets, the same what we obtain
with the sequential and the asynchronous derivation mode and total halting.

Comparing the results for total and partial halting for the minimally par-
allel derivation mode elaborated above, we realize that for any of the specific
restricted variants α of P systems with permitting contexts we have

PsgOP∗ (α, min, h) ⊆ PsMAT λ � PsRE = PsgOP∗ (α, min, H) and
NgOP∗ (α, min, h) = NREG � NRE = NgOP∗ (α, min, H) ,

i.e., in the case of the minimally parallel derivation mode the halting condition
– total in contrast to partial halting – makes the difference. Intuitively speaking,
the requirement for a computation to continue only if for every membrane a rule
is applicable, together with the minimally parallel derivation mode means that
we do not have the possibility of appearance checking and therefore cannot sim-
ulate the zero test for register machines, hence, we cannot obtain computational
completeness. In the future, the new variant of partial halting should also be
investigated for other variants of P systems working in the different derivation
modes, with multisets of objects, but also with strings, arrays, etc.

Acknowledgements. Artiom Alhazov gratefully acknowledges support by
the Academy of Finland, project 203667; he also acknowledges the project
06.411.03.04P from the Supreme Council for Science and Technological Develop-
ment of the Academy of Sciences of Moldova. The work of Marion Oswald was
supported by FWF-project T225-N04. 2006.

References

1. Alhazov, A.: On determinism of evolution-communication P systems. Journal of
Universal Computer Science 10(5), 502–508 (2004)

2. Alhazov, A.: Number of protons/bi-stable catalysts and membranes in P systems.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 79–95. Springer, Heidelberg (2006)



Partial Halting in P Systems 121

3. Alhazov, A.: Communication in Membrane Systems with Symbol Objects, Ph.D.
Thesis, Tarragona, Spain (2006)

4. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in P
systems. In: Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla (to
appear, 2007)

5. Bernardini, F., Manca, V.: P systems with boundary rules. In: Păun, G., Rozen-
berg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597,
pp. 107–118. Springer, Heidelberg (2003)

6. Bernardini, F., Romero-Campero, F.J., Gheorghe, M., Pérez-Jiménez, M.J., Mar-
genstern, M., Verlan, S., Krasnogor, N.: On P systems with bounded parallelism.
In: Ciobanu, G., Păun, G. (eds.) Pre-Proc. of First International Workshop on The-
ory and Application of P Systems, Timisoara, Romania, September 26–27, 2005,
pp. 31–36 (2005)

7. Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G.,
Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 134–
145. Springer, Heidelberg (2003)

8. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal
parallelism (accepted for TCS)

9. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

10. Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal
Computer Science 5(2), 33–49 (1999)

11. Freund, R., Oswald, M.: P Systems with activated/prohibited membrane channels.
In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Comput-
ing. LNCS, vol. 2597, pp. 261–268. Springer, Heidelberg (2003)

12. Freund, R., Oswald, M.: P systems with partial halting (accepted, 2007)
13. Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2005. LNCS,

vol. 3850. Springer, Heidelberg (2006)
14. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel

states. Theoretical Computer Science 330, 101–116 (2005)
15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-

wood Cliffs, New Jersey, USA (1967)
16. Păun, A., Păun, G.: The power of communication: P systems with symport/ an-

tiport. New Generation Computing 20(3), 295–306 (2002)
17. Păun, G.: Computing with membranes. J. of Computer and System Sciences 61(1),

108–143 (2000) and TUCS Research Report 208 (1998) http://www.tucs.fi
18. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
19. Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing.

LNCS, vol. 2597. Springer, Heidelberg (2003)
20. Rogozhin, Y., Alhazov, A., Freund, R.: Computational power of symport/antiport:

history, advances, and open problems. In: Freund, R., Păun, G., Rozenberg, G., Sa-
lomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)

21. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.
Springer, Berlin (1997)

22. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: On communication
in tissue P systems: conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 507–521. Springer,
Heidelberg (2006)

23. The P Systems Web Page, http://psystems.disco.unimib.it

http://www.tucs.fi
http://psystems.disco.unimib.it


Uniform Solution of QSAT Using

Polarizationless Active Membranes�

Artiom Alhazov1,2 and Mario J. Pérez-Jiménez3

1 Department of Information Technologies, Åbo Akademi University
Turku Center for Computer Science, FIN-20520 Turku, Finland

aalhazov@abo.fi
2 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

3 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Abstract. It is known that the satisfiability problem (SAT) can be solved
with a semi-uniform family of deterministic polarizationless P systems
with active membranes with non–elementary membrane division. We
present a double improvement of this result by showing that the satisfia-
bility of a quantified Boolean formula (QSAT) can be solved by a uniform
family of P systems of the same kind.

1 Introduction

A particularly interesting model of membrane systems are the systems with
active membranes, see [10], where membrane division can be used in order to
solve computationally hard problems in polynomial or even linear time, by a
space–time trade-off. The description of rules in this model involves membranes
and objects; the typical types of rules are (a) object evolution, (b), (c) object
communication, (d) membrane dissolution, (e), (f) membrane division. Since
membrane systems are an abstraction of living cells, the membranes are arranged
hierarchically, yielding a tree structure. A membrane is called elementary if it is
a leaf of this tree, i.e., if it does not contain other membranes.

The first efficient semi–uniform solution to SAT was given by Gh. Păun in [10],
using division for non–elementary membranes and three electrical charges. This
result was improved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [11]
using only division for elementary membranes (in that paper also a semi–uniform
solution to HPP using membrane creation is presented).
� The first author gratefully acknowledges the support by Academy of Finland, project

203667, and by the Supreme Council for Science and Technological Development
of the Academy of Sciences of Moldova, project 06.411.03.04P. The second author
wishes to acknowledge the support of the project TIN2005-09345-C04-01 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 122–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Uniform Solution of QSAT Using Polarizationless Active Membranes 123

P. Sośık in [19] provides an efficient semi–uniform solution to QSAT (quanti-
fied satisfiability problem), a well known PSPACE–complete problem, in the
framework of P systems with active membranes but using cell division rules for
non–elementary membranes. A uniform solution for QSAT was presented in [1],
while a semi–uniform polarizationless solution for SAT was presented in [3].

Different efficient uniform solutions have been obtained in the framework of
recognizer P systems with active membranes, with polarizations and only us-
ing division rules for elementary membranes ([14], [13], [5], [17], [2], [15], and
[18]). Nevertheless, the polynomial complexity class associated with recognizer
P systems with active membranes and with polarizations does not seem precise
enough to describe classical complexity classes below PSPACE. Therefore, it is
challenging to investigate weaker variants of membrane systems able to charac-
terize classical complexity classes.

This is a final version of [4]. Here we work with a variant of these membrane
systems that do not use polarizations. With this model, dissolution rules have
been shown in [6] to provide a borderline between efficiency and non–efficiency.

In the next section some preliminary ideas about recognizer membrane sys-
tems and polynomial complexity classes are introduced. In Section 3 we present
a uniform and polynomial solution of the quantified satisfiability problem by a
family of recognizer P systems with active membranes, without polarization, per-
mitting dissolution rules and division for both elementary and non–elementary
membranes. Conclusions and some final remarks are given in Section 4.

2 Preliminaries

Membrane computing is a recent branch of natural computing initiated by Gh.
Păun in [9]. The devices of this model, called P systems, provide distributed
parallel and non–deterministic computing models.

In short, one abstracts computing models from the structure and the func-
tioning of living cells, as well as from the organization of cell in tissues, organs,
and other higher order structures. The main components of such a model are
a cell-like membrane structure, in the compartments of which one places multi-
sets of symbol-objects which evolve in a synchronous maximally parallel manner
according to given evolution rules, also associated with the membranes.

Definition 1. A P system with external output, Π, is a tuple

Π =
(
Γ, H, μ,M1, . . . ,Mp, R

)
, where:

– Γ is the working alphabet of the system whose elements are called objects.
– H is an alphabet whose elements are called labels.
– μ is a membrane structure (a rooted tree) consisting of p membranes injec-

tively labelled by elements of H.
– Mi, 1 ≤ i ≤ p, is an initial multiset over Γ associated with membrane i.
– R are rules defining the behavior of objects from Γ and membranes from H.

The semantics of P systems is defined through a non–deterministic and synchro-
nous model (a global clock is assumed) as follows:



124 A. Alhazov and M.J. Pérez-Jiménez

– A configuration of a membrane system consists of a membrane structure and
a family of multisets of objects associated with each region of the structure.

– In each time unit we can transform a given configuration in another configu-
ration by applying the evolution rules to the objects placed inside the regions
of the configurations, in a non–deterministic, maximally parallel manner,
thus defining the transitions between the configurations.

– A computation of the system is a (finite or infinite) sequence of configurations
according to the transition relation.

– A computation which reaches a configuration where no more rules can be
applied to the existing objects, is called a halting computation.

– The result of a halting computation is defined through the contents of the
environment in the final configuration.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total
Boolean function over IX . In order to solve this kind of problems, we consider
P systems as recognizer languages devices.

Definition 2. A recognizer P system is a P system with external output such
that: (a) the working alphabet contains two distinguished elements yes and no;
(b) all computations halt; and (c) if C is a computation of the system, then
either object yes or object no (but not both) must have been released into the
environment, and only in the last step of the computation.

In recognizer P systems, we say that a computation C is an accepting compu-
tation (resp. rejecting computation) if the object yes (resp. no) appears in the
environment associated with the corresponding halting configuration of C.

Definition 3. Let X = (IX , θX) be a decision problem. We say that X is solv-
able in polynomial time by a (countable) family R of recognizer membrane sys-
tems Π = (Π(u))u∈IX , denoted by X ∈ PMC∗

R, if the following is true.

– The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(u) from the instance u ∈ IX .

– The family Π is polynomially bounded: for some polynomial function p(n)
each u ∈ IX , all computations of Π(u) halt in, at most, p(|u|) steps.

– The family Π is sound with regard to X: for each instance of the problem
u ∈ IX such that there exists an accepting computation of Π(u), θX(u) = 1.

– The family Π is complete with regard to X: for each instance of the problem
u ∈ IX such that θX(u) = 1, every computation of Π(u) is accepting.

We say that the family Π is a semi–uniform solution of the problem X .
A direct consequence of working with recognizer membrane systems is that

the complexity classes PMC∗
R are closed under complement. Moreover, these

complexity classes are closed under polynomial time reduction, see [12].
Now, we deal with recognizer membrane systems with an input membrane

solving decision problems in a uniform way in the following sense: all instances



Uniform Solution of QSAT Using Polarizationless Active Membranes 125

of a decision problem with the same size (according to a previously fixed poly-
nomial time computable criterion) are processed by the same system, on which
an appropriate input, representing the specific instance, is supplied.

Definition 4. A P system with an input membrane is a tuple (Π, Σ, iΠ), where:
(a) Π is a P system with external output, with working alphabet Γ , with p mem-
branes labelled with 1, . . . , p, and initial multisets M1, . . . ,Mp associated with
them; (b) Σ is an (input) alphabet strictly contained in Γ and the initial multisets
are over Γ −Σ; (c) iΠ is the label of a distinguished (input) membrane.

If m is a multiset over the input alphabet Σ, then the initial configuration of
the P system (Π, Σ, iΠ) with an input m is (μ,M1, . . . ,MiΠ ∪m, . . . ,Mp).

Definition 5. Let X = (IX , θX) be a decision problem. We say that X is solv-
able in polynomial time by a family Π = (Π(n))n∈N of recognizer membrane
systems with an input membrane, and we denote it by X ∈ PMCR, if

– The family Π is polynomially uniform by TM: some deterministic TM con-
structs in polynomial time the system Π(n) from n ∈ N.

– There exists a pair (cod, s) of polynomial-time computable functions whose
domain is IX , such that for each u ∈ IX , s(u) is a natural number and
cod(u) is an input multiset of the system Π(s(u)), verifying the following:

– The family Π is polynomially bounded with regard (X, cod, s); that is, there
exists a polynomial function p(n) such that for each u ∈ IX every computa-
tion of the system Π(s(u)) with input cod(u) halts in at most p(|u|) steps.

– The family Π is sound with regard to (X, cod, s); that is, for each instance
of the problem u ∈ IX such that there exists an accepting computation of
Π(s(u)) with input cod(u), we have θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each instance
of the problem u ∈ IX such that θX(u) = 1, every computation of Π(s(u))
with input cod(u) is an accepting one.

We say that the family Π is a uniform solution to the problem X . The complex-
ity classes PMCR are closed under complement and closed under polynomial
time reduction, in the classical sense, see [12].

Notice that if Π is a family of recognizer P systems solving a decision problem
X in polynomial time and in a uniform way, then it provides a polynomial time
solution of X in a semi–uniform way. Therefore, PMCR ⊆ PMC∗

R.

2.1 P Systems with Polarizationless Active Membranes

Definition 6. A P system with active membranes and without polarizations is
a P system with Γ as working alphabet, with H as the finite set of labels for
membranes, and where the rules are of the following forms:

(a0) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. These are object evolution rules. An
object a ∈ Γ in a membrane labelled by h evolves to a string u ∈ Γ ∗.



126 A. Alhazov and M.J. Pérez-Jiménez

(b0) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ . These are send–in communication rules.
An object from the region immediately outside a membrane labelled by h is
introduced in this membrane, possibly transformed into another object.

(c0) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ . These are send–out communication
rules. An object is sent out from membrane labelled by h to the region
immediately outside, possibly transformed into another object.

(d0) [ a ]h → b for h ∈ H, a, b ∈ Γ . These are dissolution rules. A membrane
labelled by h (not skin) is dissolved in reaction with an object.

(e0) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ . These are division rules for
elementary membranes. An elementary membrane can be divided into two
membranes with the same label, possibly transforming some objects.

(f0) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 are labels. These are di-
vision rules for non–elementary membranes. If the membrane with label h0

contains other membranes than those with labels h1, h2, these membranes
and their contents are duplicated and placed in both new copies of the mem-
brane h0; all membranes and objects placed inside membranes h1, h2, as
well as the objects from membrane h0 placed outside membranes h1 and h2,
are reproduced in the new copies of membrane h0.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one
step, one object of a membrane can be used by only one rule (chosen non–
deterministically), but any object which can evolve, must evolve.

– If at the same time a membrane labelled with h is divided by a rule of type
(e0) or (f0) and there are objects in this membrane which evolve by means
of rules of type (a0), then we suppose that first the evolution rules of type
(a0) are used, and then the division is produced. The process takes one step.

– The rules for membranes h are used for all copies of this membrane. At one
step, a membrane can be the subject of only one rule of types (b0)–(f0).

We denote by AM0(α, β), where α ∈ {−d, +d} and β ∈ {−ne, +ne}, the class
of all recognizer P systems with polarizationless active membranes such that:
−d forbids rules (d0), and −ne forbids rules (f0).

Proposition 1. For each α ∈ {−d, +d} and β ∈ {−ne, +ne} we have:

(1) PMCAM0(α,β) ⊆ PMC∗
AM0(α,β).

(2) PMCAM0(α,−ne) ⊆ PMCAM0(α,+ne).
(3) PMC∗

AM0(α,−ne) ⊆ PMC∗
AM0(α,+ne).

(4) PMCAM0(−d,β) ⊆ PMCAM0(+d,β).
(5) PMC∗

AM0(−d,β) ⊆ PMC∗
AM0(+d,β).

A conjecture known in the membrane computing area under the name of the
P–conjecture (proposed by Gh. Păun in 2005) is that P = PMCAM0(+d,−ne).

In [6] one obtains some partial answers of that conjecture. Specifically, in the
framework of recognizer P systems with membrane division but without using
polarizations a surprising role of the dissolution rules is shown, as it makes the
difference between efficiency and non–efficiency for P systems with membrane
division and without polarization.



Uniform Solution of QSAT Using Polarizationless Active Membranes 127

Theorem 1. The following statements hold:

(1) P = PMCAM0(−d,β) = PMC∗
AM0(−d,β), for each β ∈ {−ne, +ne}.

(2) NP ⊆ PMC∗
AM0(+d,+ne).

3 A Uniform Solution of QSAT

In this section we extend the result (2) from Theorem 1, providing an uniform
and linear time solution of QSAT (quantified satisfiability) problem, through a
family of recognizer P systems using polarizationless active membranes, dissolu-
tion rules and division for elementary and non–elementary membranes.

Given a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with
Boolean variables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn)
(where Qn is ∃ if n is odd, and Qn is ∀ otherwise) is said to be the (existential)
fully quantified formula associated with ϕ(x1, . . . , xn). Recall that a sentence is
a Boolean formula in which every variable is in scope of a quantifier.

We say that ϕ∗ is satisfiable if for each truth assignment, σ, over {i : 1 ≤ i ≤
n ∧ i even} there is an extension σ∗ of σ over {1, . . . , n} such that the value of
xi only depends on the values of xj , 1 ≤ j < i, verifying σ∗(ϕ(x1, . . . , xn)) = 1.

The QSAT problem is the following one: Given the (existential) fully quanti-
fied formula ϕ∗ associated with a Boolean formula ϕ(x1, . . . , xn) in conjunctive
normal form, determine whether or not ϕ∗ is satisfiable.

It is well known that QSAT is a PSPACE–complete problem [8].

Theorem 2. QSAT ∈ PMCAM0(+d,+ne).

Proof. The solution proposed follows a brute force approach, in the framework of
recognizer P systems with polarizationless active membranes where dissolution
rules, and division for elementary and non–elementary membranes are permitted.
The solution consists in the following stages:

– Generation Stage: using membrane division for elementary and non–elemen-
tary membranes, all truth assignments for the variables associated with the
Boolean formula are produced.

– Assignments stage: in a special membrane we encode the clauses that are
satisfied for each truth assignment.

– Checking Stage: we determine what truth assignments make the Boolean
formula evaluate to true.

– Quantifier Stage: the universal and existential gates of the fully quantified
formula are simulated and its satisfiability is encoded by a special object in
a suitable membrane.

– Output Stage: The systems sends out to the environment the right answer
according to the result of the previous stage.

Let us consider a propositional formula in the conjunctive normal form:

ϕ = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.



128 A. Alhazov and M.J. Pérez-Jiménez

We consider a normal form for QSAT: the number of variables is even (n = 2n′)
and the quantified formula is ϕ∗ = ∃x1∀x2 · · · ∃xn−1∀xn ϕ(x1, . . . , xn).

Let us consider the (polynomial time computable and bijective) pair function
from N2 onto N defined by 〈n, m〉 = ((n + m)(n + m + 1)/2) + n. Depend-
ing on numbers m (of clauses) and n (of variables), we will consider a system
(Π(〈n, m〉), Σ(〈n, m〉), i0), where i0 = 0 is the input region and Σ(〈n, m〉) =
{vi,j , v

′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the input alphabet.

The problem instance ϕ will be encoded in the P system by a multiset con-
taining one copy of each symbol from sets X, X ′ ⊆ Σ(〈n, m〉), corresponding
to the clause-variable pairs such that the clause is satisfied by true and false
assignment of the variable, defined below. We now construct the P system

Xϕ = {vi,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},
X ′

ϕ = {v′i,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Π(〈n, m〉) = (O, H, μ, w0, · · · , wm+5n+3, R), with

O = Σ(〈n, m〉) ∪ {ui,j, u
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {di | 0 ≤ i ≤ 2m + 7n + 2} ∪ {ai, ti, fi | 1 ≤ i ≤ n}
∪ {ci | 1 ≤ i ≤ m} ∪ {t, f, z, z′, T, T ′, yes, no},

μ = [ [ · · · [ [ ]0 ]1 · · · ]m+5n+2 ]m+5n+3,

w0 = wm+5n+1 = d0,

wm+2n+3i = dm+5n, 1 ≤ i ≤ n,

wi = λ, i /∈ {0, m + 5n + 1} ∪ {m + 2n + 3i | 1 ≤ i ≤ n},
H = {0, · · · , m + 5n + 3},

and the following rules (we also explain their use):

Generation stage
G1 [ d3i → ai+1d3i+1 ]0,

[ d3i+1 → d3i+2 ]0,
[ d3i+2 → d3i+3 ]0, 0 ≤ i < n.
[ d3n+i → d3n+i+1 ]

0
, 0 ≤ i < m + 2n.

We count to m+5n, which is the time needed for producing all 2n truth assign-
ments for the n variables, as well as membrane sub-structures which will examine
the truth value of formula ϕ for each of these truth assignments; this counting is
done in the central membrane; moreover during steps 3i− 2, 1 ≤ i ≤ n, symbols
a1, · · · , an are subsequently produced.

G2 [ ai ]0 → [ ti ]0[ fi ]0, 1 ≤ i ≤ n.

In membrane 0, we subsequently choose each variable xi, 1 ≤ i ≤ n, and both
values true and false are associated with it, in form of objects ti and fi, which
are separated in two membranes with label 0. The division of membrane 0 is
triggered by the objects ai, which are introduced by the first rule from group
G1 in steps 3i− 2, 1 ≤ i ≤ n; this is important in interleaving the use of these



Uniform Solution of QSAT Using Polarizationless Active Membranes 129

label s

����
t a g e

m+5n+3 O o

m+5n+2 O o

m+5n+1 O o

�������������
�������������

m+5n−1 Q o o

m+5n−2 Q o

������
������ o

������
������

m+5n−4 Q o o o o

m+5n−5 Q o o o o

m+2n+2 Q o o o o o o o o

m+2n+1 Q o

�� �� o

		 �� o

		 �� o

		 �� o

		 �� o

		 �� o

		 �� o

		 


m+2n A o o o o o o o o o o o o o o o o

m+2n − 1 A o o o

2n + 1 A o o o

2n C o o o

2 C o o o

1 C o o o

Fig. 1. The membrane structure of the system Π after m + 5n steps

rules (hence the division of membrane 0) with the use of the rules of group G4,
for dividing membranes placed above membrane 0.

G3 [ dj → dj−1 ]m+2n+3i, 1 ≤ j ≤ m + 5n− 2, 1 ≤ i ≤ n,
[ d0 ]m+2n+3i → z′, 1 ≤ i ≤ n.

After m + 5n steps, dissolution rule is applied to membranes m + 2n + 3i.

G4 [ [ ] i[ ] i ] i+1 → [ [ ] i ] i+1[ [ ] i ] i+1, 0 ≤ i < m + 5n.

These are division rules for membranes with label 0, 1, · · · , m+5n, to be used for
the central membrane 0 in steps which follow the use of the first rule of type G1.
The division of a membrane with label 1 is then propagated from lower levels
to upper levels of the membrane structure and the membranes are continuously
divided. The membrane division stops at the level where a membrane m+2n+3i
has been already dissolved by a rule from group G3. This results in the structure
as shown in Fig. 1 after m + 5n steps.

G5 [ dm+5n ]0 → T .

After m + 5n steps, each copy of membrane with label 0 is dissolved and the
contents is released into the surrounding membrane, which is labeled with 1.

Assignments stage
A1 [ ti → t′ ]2i−1,

[ t′ ]2i−1 → z,
[ fi ]2i−1 → f ′,
[ f ′ → z ]2i,
[ z ]2i → z′, 1 ≤ i ≤ n.



130 A. Alhazov and M.J. Pérez-Jiménez

Depending on the variable assignments, we need to determine what clauses are
satisfied. For a variable xi, this is done in membranes 2i − 1 and 2i. The ob-
jects encoding the problem propagate through the membrane structure: object
ti dissolves membrane 2i− 1 after one step, and then it dissolves membrane 2i
immediately, while object fi dissolves membrane 2i − 1 immediately, and then
it dissolves membrane 2i after one step.

A2 [ vi,j → ui,j ]2i−1,
[ v′i,j → u′

i,j ]2i−1, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Once in membrane 2i− 1, objects vi,j and v′i,j wait for one step.

A3 [ u′
i,j → λ ]2i−1,

[ ui,j → ci ]2i−1,
[ ui,j → λ ]

2i
,

[ u′
i,j → ci ]2i, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

If membrane 2i−1 is not in the meantime, then the objects encoding the instance
of SAT evolve according to the true value of xi, otherwise, they evolve according
to the false value of xi.

At the end of this routine (it takes 3n steps), a membrane with label 2n + 1
which contains all the symbols c1, · · · , cm, corresponds to the truth assignment
satisfying all clauses, hence it satisfies formula ϕ, and vice-versa.

Checking stage
C1 [ ci ]2n+i → ci, 1 ≤ i ≤ m.

A membrane with label 2n+i, 1 ≤ i ≤ m, is dissolved if and only if ci appears in it
(i.e., clause Ci is satisfied by the current truth assignment); if this is the case, the
truth assignment associated with the membrane is released in the surrounding
membrane. Otherwise, the truth assignment remains blocked in membrane 2n+i
and never used at the next steps by the membranes placed above.

C2 [ T ]m+2n+1 → T .

The fact the object T appears in the membrane with the label m+2n+1 means
that there is a truth assignment which satisfies the formula ϕ. In this case, the
membrane with label m + 2n + 1 is dissolved and the contents are released into
the membrane with label m + 2n + 2. Otherwise, the formula is not satisfiable,
and the membrane with label m + 2n + 1 will not dissolve.

Quantifier stage
Q1 [ T ]m+2n+6i+1 → T ′,

[ T ]m+2n+6i+2 → T ,
[ T ′ → λ ]m+2n+6i+2, 1 ≤ 2i ≤ m.

The universal gate of the formula is simulated by dissolution of two membranes:
this happens if and only if two copies of T are present. One copy dissolves
membrane m+2n+6i+1 and is erased while the other copy dissolves membrane
m+2n+6i+2 and sends one copy of T outside; otherwise the computation in this
gate stops without sending any object out. Recall that membrane m+2n+6i+3
has been erased by rule from group G3.



Uniform Solution of QSAT Using Polarizationless Active Membranes 131

Q2 [ T ]
m+2n+6i+4

→ T ′,
[ T ′ ]m+2n+6i+5 → T ,
[ T → λ ]m+2n+6i+5, 1 ≤ 2i ≤ m.

The existential gate of the formula is simulated by dissolution of two membranes:
this happens if and only at least one copy of T is present. One copy dissolves
membrane m + 2n + 6i + 4 and then it also dissolves membrane m + 2n + 6i + 2,
(thus sending one copy of T outside) while the other copy (if exists) is erased;
if no copy of T is present, no rule is applied, so the gate sends nothing outside.
Recall that membrane m + 2n + 6i + 6 has been erased by rule from group G3.

Q3 [ di → di+1 ]m+5n+1, 0 ≤ i ≤ 2m + 8n + 1.

At the same time as the membrane with label m + 5n + 1 is dissolved (at step
2m + 8n + 1), the object d2m+8n+1 evolves to d2m+8n+2, and then released to
the membrane with label m + 5n + 2.

Output stage
O1 [ d2m+8n+2 ]m+5n+2 → yes.
O2 [ a ]m+8n+3 → [ ]m+5n+3a, a ∈ {yes, no}.

In the next two steps, the object yes is produced, and sent to the environment.

O3 [ d2m+8n+2 ]m+5n+1 → no.
O4 [ no ]m+5n+2 → no.

If the formula is not satisfiable, then the object d2m+8n+1 remains in the mem-
brane with label m + 5n + 1, which produces the object no, ejecting it into the
membrane with label m+5n+2, then into the membrane with label m+5n+3,
finally into the environment.

Therefore, in 2m+8n+3 the system halts and sends into the environment one
of the objects yes, no, indicating whether or not the formula ϕ∗ is satisfiable.

It is easy to see that the system Π can be constructed in a polynomial time
starting from numbers m, n, and this concludes the proof.1 �

This result can be contrasted to the result from [1] in the following way: we
used membrane dissolution instead of polarization. One of the techniques used
to achieve this goal is: instead of modifying the (polarization of the) membrane
and checking it later, we use two membranes and control the time when the
inner membrane is dissolved. In this case checking the membrane polarization is
replaced by checking whether it exists, i.e., checking the membrane label.

This is used in the Assignments stage (truth-value objects influence the input
objects, rules A1 and A3). In the Checking stage the dissolution picks one object
1 The systems constructed above are deterministic.

It is possible to speed up the system; the present construction is made for an
easier explanation: the stages do not overlap in time.

The only rules of type (c0) in the system are O2, executed in the last step. Hence,
these rules are not important for deciding whether ϕ∗ is satisfied; they are only
needed to send the answer out of the skin membrane.



132 A. Alhazov and M.J. Pérez-Jiménez

ci, performing the “if” behavior. In the Output stage the dissolution makes it
possible to send exactly one of objects yes and no out. in the Quantifier stage
OR and AND are implemented by counting until one or two by dissolution.

Another way the dissolution is used in the construction is to stop (by rules G3)
the propagation of the non-elementary division (rules G4) from the elementary
membranes outwards, to obtain the structure on Figure 1, because the rule is
more restricted then in the case with polarizations.

The dissolution is crucial here since, after membrane polarizations have been
removed, it remained the only way the objects can influence the behavior ofother
objects; otherwise the behavior of each object is easily decidable, see [6]. From
Theorem 2, since the complexity class PMCAM0(+d,+ne) is closed under poly-
nomial time reductions, we have the following result.

Corollary 1. PSPACE ⊆ PMCAM0(+d,+ne).

4 Conclusions

The framework of recognizer P systems with active membranes and with three
electrical charges does not seem precise enough to describe classical complexity
classes below PSPACE. In [6], [7] one has considered weaker variants of these
P systems removing polarizations but keeping other usual ingredients associated
with active membranes (no cooperation, no priorities, and without changing
the labels of membranes). In [6] one shows that in the above framework but
without using dissolution rules, it is possible to solve in polynomial time only
decision problems which are tractable in the standard sense. Moreover, if we
consider membrane dissolution rules then we can solve NP–complete problems
in polynomial time and in a semi–uniform way and using division for elementary
and non–elementary membranes, see [3] and [6].

In this paper we give a polynomial time and uniform solution of QSAT, a
well-known PSPACE–complete problem, through a family of recognizer P sys-
tems using polarizationless active membranes, dissolution rules and division for
elementary and non–elementary membranes. It remain as an open question if
the division for non–elementary membranes can be removed. Our result thus
presents an interesting counterpart of the result from [1], compared to which the
polarizations have been replaced by membrane dissolution.

References

1. Alhazov,A.,Mart́ın-Vide,C.,Pan,L.: SolvingaPSPACE-completeproblembyPsys-
temswithrestrictedactivemembranes.FundamentaInformaticae58(2),67–77(2003)

2. Alhazov, A., Mart́ın–Vide, C., Pan, L.: Solving graph problems by P systems with
restricted elementary active membranes. In: Jonoska, N., Păun, G., Rozenberg,
G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 1–22. Springer,
Heidelberg (2003)

3. Alhazov, A., Pan, L., Păun, G.: Trading Polarizations for Labels in P Systems with
Active Membranes. Acta Informaticae 41(2-3), 111–144 (2004)



Uniform Solution of QSAT Using Polarizationless Active Membranes 133

4. Alhazov, A., Pérez-Jiménez, M.J.: Uniform Solution to QSAT Using Polarization-
less Active Membranes. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A.,
Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Comput-
ing, Sevilla, vol. I, pp. 29–40. Fénix Editora (2006)

5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system
for finding a balanced 2-partition. Soft Computing 9(9), 673–678 (2005)

6. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: On the power of dissolution in P systems with active membranes.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 224–240. Springer, Heidelberg (2006)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: P systems with active membranes, without polarizations and with-
out dissolution: A characterization of P. In: Calude, C.S., Dinneen, M.J., Păun, G.,
Pérez-Jiménez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 105–116.
Springer, Heidelberg (2005)

8. Papadimitriou, C.H.: Computational Complexity. Addison–Wesley, Reading (1995)
9. Păun, G.: Computing with membranes. Journal of Computer and System Sci-

ences 61(1), 108–143 (2000)
10. Păun, G.: P systems with active membranes: Attacking NP–complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
11. Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane divi-

sion in P systems. Theoretical Computer Science 324(1), 61–85 (2004)
12. Pérez–Jiménez, M.J.: An approach to computational complexity in Membrane

Computing. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Sa-
lomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 85–109. Springer, Heidelberg
(2005)

13. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active
membranes. New Generation Computing 23(4), 367–384 (2005)

14. Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear–time solution to the Knapsack
problem using P systems with active membranes. In: Mart́ın-Vide, C., Mauri,
G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS,
vol. 2933, pp. 250–268. Springer, Heidelberg (2004)

15. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Solving the Bin Packing problem
by recognizer P systems with active membranes. In: Păun, G., Riscos-Núñez, A.,
Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Proceedings of the Second Brain-
storming Week on Membrane Computing, (Report RGNC 01/04, University of
Seville) pp. 414–430 (2004)

16. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. In: Proceedings of the
5th Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Bu-
dapest. Computer and Automation Research Institute of the Hungarian Academy
of Sciences, pp. 284–294 (2003)

17. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

18. Pérez-Jiménez, M.J., Romero–Campero, F.J.: Attacking the Common Algorithmic
Problem by recognizer P systems. In: Margenstern, M. (ed.) MCU 2004. LNCS,
vol. 3354, pp. 304–315. Springer, Heidelberg (2005)

19. Sośık, P.: The computational power of cell division. Natural Computing 2(3), 287–
298 (2003)



Satisfiability Parsimoniously Reduces to the

TantrixTM Rotation Puzzle Problem�

Dorothea Baumeister and Jörg Rothe

Institut für Informatik, Universität Düsseldorf, 40225 Düsseldorf, Germany

Abstract. Holzer and Holzer [HH04] proved that the TantrixTM rota-
tion puzzle problem is NP-complete. They also showed that for infinite
rotation puzzles, this problem becomes undecidable. We study the count-
ing version and the unique version of this problem. We prove that the
satisfiability problem parsimoniously reduces to the TantrixTM rotation
puzzle problem. In particular, this reduction preserves the uniqueness of
the solution, which implies that the unique TantrixTM rotation puzzle
problem is as hard as the unique satisfiability problem, and so is DP-
complete under polynomial-time randomized reductions, where DP is the
second level of the boolean hierarchy over NP.

Keywords: computational complexity, rotation puzzle, tiling of the
plane, parsimonious reduction, counting problem.

1 Introduction

TantrixTM is a puzzle game played with hexagonal tiles firmly arranged in the
plane that each can be rotated around their axes. There are four different types
of tiles (called Sint, Brid, Chin, and Rond, see Figure 1) that differ by the form
of the three colored lines they each have, where colors are chosen among red,
yellow, blue, and green. The objective of the game is to find a rotation of the given
tiles so as to create long lines and loops of the same color. Since its invention
in 1991 by Mike McManaway from New Zealand and its commercial launch,
the TantrixTM rotation puzzle has become extremely popular and commercially
successful.

Holzer and Holzer [HH04] considered two variants of the TantrixTM rotation
puzzle problem, one with finitely many and one with infinitely many tiles in a
given problem instance. They proved that the finite variant of this problem is
NP-complete by reducing the NP-complete boolean circuit satisfiability problem
(restricted to circuits with AND and NOT gates only) to it. They also showed
that the infinite variant of the TantrixTM rotation puzzle problem is undecidable,
again employing a circuit construction. For other results on the complexity of
problems related to Domino-like strategy games, we refer to Grädel [Grä90].

We consider two variants of the finite TantrixTM rotation puzzle problem,
its counting version and its unique version. The counting problem asks for the
� Supported in part by DFG grant RO 1202/9-3 and the Alexander von Humboldt

Foundation’s TransCoop program. URL: http://ccc.cs.uni-duesseldorf.de/˜rothe

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 134–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Satisfiability Parsimoniously Reduces to the TantrixTM 135

number of solutions of a given rotation puzzle instance. The unique problem
asks whether a given rotation puzzle instance has exactly one solution. Our main
result is that the satisfiability problem parsimoniously reduces to the TantrixTM

rotation puzzle problem.
The class #P was introduced by Valiant [Val79] to capture the complex-

ity of counting the solutions of NP problems. Parsimonious reductions between
NP counting problems—such as ours—preserve the precise number of solutions.
This is an important property for at least two reasons. First, the structure of
the solution space is preserved by a parsimonious reduction from A to B, since
solutions of A are mapped bijectively to solutions of B in polynomial time. Sec-
ond, parsimonious reductions can be used to prove lower bounds for the unique
versions of NP problems. In particular, we apply our above-mentioned parsi-
monious reduction to prove that the unique TantrixTM rotation puzzle problem
is DP-complete1 under polynomial-time randomized reductions in the sense of
Valiant and Vazirani [VV86].

While many standard reductions between NP-complete problems are easily
seen to be parsimonious, there are a number of exceptions. For example, Barban-
chon [Bar04] showed that the (planar) satisfiability problem is parsimoniously
polynomial-time reducible to the (planar) 3-colorability problem via a rather so-
phisticated construction. Other examples of nontrivial parsimonious reductions
can be found in [Pap94]. Holzer and Holzer’s reduction, however, is not parsi-
monious [HH04]. The main purpose of this paper is to show how to modify their
reduction so as to make it parsimonious.

2 Preliminaries

2.1 Definition of Some Complexity-Theoretic Notions

Fix the alphabet Σ = {0, 1}, and let Σ∗ denote the set of strings over Σ.
As is common, decision problems are suitably encoded as languages over Σ.
For any language A ⊆ Σ∗, let ‖A‖ denote the number of elements in A. For
some background on computational complexity theory, we refer to any standard
textbook of this field, e.g., [Pap94, Rot05]. Let NP denote the class of problems
solvable in nondeterministic polynomial time. Generalizing NP, Papadimitriou
and Yannakakis [PY84] introduced the class DP = {A − B | A, B ∈ NP} to
capture the complexity of NP-hard or coNP-hard problems that seemingly are
neither in NP nor in coNP. In particular, they showed that DP contains a number
of uniqueness problems, critical graph problems, and exact optimization problems,
and they showed some of these problems complete for DP; see also the recent
survey [RR06]. Note that DP was later generalized by Cai et al. [CGH+88,
CGH+89], who introduced the boolean hierarchy over NP. Note that DP is the
second level of this hierarchy.

1 DP is the set of differences of any two NP sets [PY84]; so NP ⊆ DP, and it is
considered most unlikely that both classes are equal.



136 D. Baumeister and J. Rothe

(a) Sint (b) Brid (c) Chin (d) Rond

(e) red (f) yellow (g) blue (h) green

Fig. 1. TantrixTM tiles and colors

In his seminal paper, Valiant [Val79] initiated the study of counting problems
and introduced the important counting class #P. Members of #P are referred
to as NP counting problems. A well-known NP counting problem is #SAT, the
counting version of the satisfiability problem: Given a boolean formula, how
many satisfying assignments does it have?

Definition 1 (Valiant [Val79]). Let NPTM be a shorthand for nondeter-
ministic polynomial-time Turing machine. For any NPTM M and any in-
put x, let accM (x) denote the number of accepting computation paths of M(x),
i.e., accM is a function mapping from Σ∗ to N. Define the function class
#P = {accM | M is an NPTM}.

We now define the notion of (polynomial-time) parsimonious reducibility, which
will be used to compare the hardness of solving NP counting problems. Intu-
itively, an NP counting problem f parsimoniously reduces to an NP counting
problem g if the instances of f can be transformed into instances of g such that
the number of solutions of f are preserved under this transformation.

Definition 2. Let f and g be any two given counting problems mapping from
Σ∗ to N. We say f (polynomial-time) parsimoniously reduces to g (denoted
by f ≤p

par g) if there exists a polynomial-time computable function ρ such that
for each x ∈ Σ∗, f(x) = g(ρ(x)). If F and G are the NP decision problems
corresponding to the NP counting problems f and g with f ≤p

par g, we will also
say that F parsimoniously reduces to G.

2.2 Variants of the Tantrix Rotation Puzzle Problem

The TantrixTM rotation puzzle has four kinds of hexagonal tiles—the Sint, the
Brid, the Chin, and the Rond—each of which has three colored lines, where the
colors are chosen among red, yellow, blue, and green, see Figure 1(a)–(d). This
gives a total of 56 different tiles. Since we aren’t using actually colored figures,
we encode the colors as shown in Figure 1(e)–(h).

Holzer and Holzer [HH04] showed that the decision problem TantrixTM rota-
tion puzzle (which we denote by TRP, for short) is NP-complete. In this paper,
we introduce and study #TRP, the counting version of TRP.

We now briefly describe the formalism introduced by Holzer and Holzer
[HH04] to define TRP, since the same formalism is useful for defining #TRP. In



Satisfiability Parsimoniously Reduces to the TantrixTM 137

Fig. 2. A two-dimensional hexagonal coordinate system

particular, to represent the instances of both these problems, a two-dimensional
hexagonal coordinate system is used, see Figure 2. In this system, two distinct
pairs a = (u, w) and b = (v, x) from Z2 are adjacent if and only if one of the
following four conditions is satisfied:

1. u = v and |w − x| = 1,
2. |u− v| = 1 and w = x,
3. u− v = 1 and w − x = 1, and
4. u− v = −1 and w − x = −1.

Let T be the set of all TantrixTM tiles. Let A be a (partial) function mapping
the elements of Z2 to T , i.e., for those v ∈ Z2 on which A is defined, A(v) is
the type of the tile located at v. The set shape(A) = {v ∈ Z2 | A(v) is defined}
gives the positions in Z2 at which tiles are placed. For all a, b ∈ shape(A), A(a)
is adjacent to A(b) if and only if a is adjacent to b.

TRP is then defined as follows (note that the initial orientation is not specified,
as it doesn’t matter for the question of whether the decision problem TRP is
solvable) [HH04]:2

Name: TantrixTM Rotation Puzzle (TRP, for short).
Given: A finite shape function A : Z2 → T , appropriately encoded as a string.
Question: Is the rotation puzzle defined by A solvable, i.e., does there exist a

rotation of the given tiles at their positions such that at each joint edge of
two adjacent tiles the corresponding colors match?

For any given TRP instance A, a solution of A is a specification (in some
appropriate encoding) of each tile in shape(A) in some particular orientation
such that for each joint edge of two adjacent tiles the corresponding colors match.
Figure 3 gives an example of a rotation puzzle instance and its solution. Let
SolTRP(A) denote the set of solutions of a given TRP instance A. So A is in
TRP (viewed as a language) if and only if the set SolTRP(A) is nonempty.

We now define the counting version and the unique version of TRP, which
will be considered in Sections 3 and 4.
2 As noted by Holzer and Holzer [HH04], there is a difference between their definition

of TRP, which allows holes in TRP instances, and the original TantrixTM game,
which does not allow holes. The problem of whether the analog of TRP without
holes still is NP-complete is open.



138 D. Baumeister and J. Rothe

(a) Puzzle (b) Solution

Fig. 3. An example of a TRP instance and its solution

Definition 3. 1. The TantrixTM rotation puzzle counting problem is the func-
tion #TRP : Σ∗ → N defined by

#TRP(A) = ‖SolTRP(A)‖,

where we assume that inputs A are appropriately encoded as strings in Σ∗

and function values are nonnegative integers (represented in binary).
2. The unique TantrixTM rotation puzzle problem is defined by

Unique-TRP = {A |#TRP(A) = 1}.

3 Satisfiability Parsimoniously Reduces to the TantrixTM

Rotation Puzzle Problem

In this section, we prove our main result:

Theorem 4. #SAT ≤p
par #TRP.

The proof of Theorem 4 will be presented in Sections 3.1, 3.2, 3.3, and 3.4.
To prove TRP NP-complete, Holzer and Holzer [HH04] gave a reduction from

the NP-complete problem Circuit∧,¬-SAT (see Cook [Coo71]): Given a boolean
circuit C with AND and NOT gates, does there exist a truth assignment to the
input gates of C such that C under this assignment evaluates to true? Holzer and
Holzer’s construction simulates the computation of such a boolean circuit C by
a TantrixTM rotation puzzle such that C evaluates to true for some assignment
to its variables if and only if the puzzle has a solution.

Our construction will modify Holzer and Holzer’s reduction [HH04] in such
a way that there is a one-to-one correspondence between the solutions of the
given Circuit∧,¬-SAT instance and the solutions of the resulting rotation puzzle
instance; hence our reduction is parsimonious. The reduction employs planar
cross-over gates (consisting of AND and NOT gates only) to avoid wire crossings
of the given circuit; for technical details and examples, see [HH04].

To simulate the circuit by a rotation puzzle, a number of subpuzzles are used.
The color blue in these subpuzzles will represent the truth value true, and the
color red will represent false. This color encoding at the inputs and outputs of
the subpuzzles thus represent the truth values of the circuit’s gates and wires.



Satisfiability Parsimoniously Reduces to the TantrixTM 139

Due to space limitations, the original subpuzzles from [HH04] that are given in
the full version of this paper [BR07] to allow comparison, are omitted here. Our
arguments about the original subpuzzles refer to the notation used in [BR07].

3.1 Wire Subpuzzles

Wires of the circuit are simulated by the subpuzzles WIRE, MOVE, and COPY.
Figure 4 shows the modified WIRE subpuzzle, which simply represents a

vertical wire. Longer wires can be built by using several WIRE subpuzzles. A
single WIRE has height two, which implies that all other subpuzzles must have
even height. (Otherwise it wouldn’t be possible to simulate a circuit by a rotation
puzzle.) It is easy to see that the original WIRE subpuzzle from [HH04] (see
also [BR07, Figure 11]) has more than one valid solution with the input colors
blue and red. In particular, tile a and tile b have two possible orientations for
each input color, so there are four possible solutions. However, by inserting a
Rond in the colors blue, red, and green at position x, we obtain a unique solution.
If the input color is blue, there is a blue vertical line. Tiles a and b now must
have red at the edge adjacent to tile x, since x doesn’t have yellow. If the input
color is red, tiles a and b have a choice between either blue or yellow for the edge
joint with x. Again, since x doesn’t have yellow, the solution is unique.

Figure 5 presents the modified MOVE subpuzzle by which a wire can be
moved by two positions to the left or to the right. Consider a move to the right
(a move to the left can be handled analogously). The original MOVE subpuzzle
from [HH04] (see also [BR07, Figure 12]) has again more than one valid solution.
To eliminate this ambiguity, we do the following. Suppose the input color is blue.
Since red and yellow are symmetric in all tiles of the original MOVE subpuzzle
(see [BR07, Figure 12]), there are two symmetric solutions. Also, tiles a and i
have two possible orientations for each such solution. However, inserting a Sint
in the colors red, yellow, and blue at position x enforces that the tile b has yellow
at the edge adjacent to x, since e has blue at the edge adjacent to x for both
possibilities. Fixing the orientation of tile b also fixes the orientation of all other
tiles except a and i. Moreover, a’s orientation is also uniquely determined by the
tile at position x. First, for the joint edge of tiles a and x, one can choose among
the colors red and yellow, but since yellow already must be the color x uses for

(a) In: true (b) In: false (c) Scheme

Fig. 4. Modified subpuzzle WIRE



140 D. Baumeister and J. Rothe

(a) In: true (b) In: false (c) Scheme

Fig. 5. Modified subpuzzle MOVE

(a) In: true (b) In: false (c) Scheme

Fig. 6. Modified subpuzzle COPY

the edge joint with b, x must have red as the color for the edge joint with a.
Second, to uniquely determine the orientation of tile i, insert another Sint in
the colors red, yellow, and blue at position y. Since tile h has color yellow at the
edge joint with y, symmetric arguments as above work for fixing the orientation
of i via y. The case of red being the input color can be handled similarly.

Finally, Figure 6 presents the modified COPY subpuzzle, which can be used
to “split” a wire into two copies. Its structure is akin to the MOVE subpuzzle,
though it is wider and has two outputs. Due to symmetry, the original COPY
subpuzzle from [HH04] (see also [BR07, Figure 13]) has again more than one
valid solution. However, we can enforce a unique solution (for both input colors,
blue and red) by inserting three asymmetric Sint tiles in the colors red, blue,
and yellow at positions x, y, and z. The argument then is similar to the one for
the MOVE subpuzzle.

3.2 Gate Subpuzzles

In order to simulate a boolean circuit with AND and NOT gates, we need the
subpuzzles AND and NOT corresponding to these gates.

Figure 7 presents the modified NOT subpuzzle, which negates the input value
by flipping the colors blue and red. In the original NOT subpuzzle from [HH04]
(see also [BR07, Figure 14]), there is only one possible orientation for the tiles
e, f , and g, since the tiles c, b, and f do not contain green. Thus tiles c and
b must have red at the edge adjacent to tile e. It follows that for each input



Satisfiability Parsimoniously Reduces to the TantrixTM 141

(a) In: true (b) In: false (c) Scheme

Fig. 7. Modified subpuzzle NOT

color only two orientations are possible for tiles a and d. Inserting a Brid in the
colors blue, yellow, and green at position x uniquely determines the orientation
of tile a. Since x does not contain red, we have that tile a is forced to choose
yellow at the edge adjacent to x if the input color was blue. On the other hand,
if the input color was red, a has a choice between blue and green for this color
because x has blue at the edge joint with b. However, since a doesn’t contain
green, this uniquely determines the orientation of a. The orientation of tile d
can be made unique by inserting a Rond in the colors yellow, red, and green at
position y. For both input colors, c has yellow at the edge joint with y, so d and
y can share either yellow or green. Since tile d contains no green, its orientation
is uniquely determined. Thus, for both input colors, a valid solution of the NOT
subpuzzle is uniquely determined.

Figure 8 presents the somewhat more complicated modified AND subpuzzles.
Similarly as for the original NOT subpuzzle, in the original AND subpuzzle
from [HH04] (see also [BR07, Figure 15]) the tiles o, p, and q have only one
possible orientation, due to the colors at the joint edges with tiles m and n.
The output of these subpuzzles is determined by the orientation of tile c. If c’s
color at the edge joint with j is blue, then the output color also is blue. This is
the case exactly if both inputs have color blue. In all other cases, the color at
the joint edge of c and j is yellow, which implies that the output color will be
red. For each of these subpuzzles’ upper part, the orientations are determined
by the color at the joint edge of c and j. For their lower parts, however, several
solutions are possible. Again, there are two possible orientations of the tiles a
and d. Since the tiles h and i have only one connection to the remaining subpuzzle
each, they too have two possible orientations, independent of the input color.
However, since the tiles h and i do not contain blue, the input color uniquely
determines the orientation of tiles b and e. The tiles c, g, and f have a different
orientation for each combination of input colors, which implies that the correct
output color is passed on by tile j to the upper part of the subpuzzle. However,
two orientations are possible for tile g, which is a Rond. Due to its symmetry and
since its neighbors are c and f , it cannot receive a unique orientation by the colors
at the joint edges with these neighbors in the original subpuzzle (see [BR07,
Figure 15]).



142 D. Baumeister and J. Rothe

(a) In: true, true (b) In: true, false (c) In: false, true

(d) In: false, false (e) Scheme

Fig. 8. Modified subpuzzle AND

The orientations of tiles a and h (respectively, of tiles d and i) can be made
unique by inserting a Sint in the colors blue, yellow, and red at position x (re-
spectively, at position y). The orientation of tile g cannot be made unique by
inserting another tile. For these subpuzzles, there exist four possible combina-
tions of input colors, and because of the given colors at joint edges it is not
possible to insert a new tile adjacent to g. This implies that we need to replace
existing tiles by different tiles. So, to obtain a unique solution, we replace the
color yellow by green in the tiles j and c, and tile g is replaced by a Sint in
the colors green, blue, and red. Replacing yellow by green in j and c is easily
possible. Tile j has yellow at the edge joint with c only in some cases, and c’s
yellow is also replaced by green. Also, tile c has yellow at the edge adjacent to g,
which now is green at this edge. By the new tile at position g, the orientation
of f changes if the right input color is blue, since yellow is no longer possible
as the color for the joint edge. These replacements do not alter the behavior of
the AND subpuzzles, other than giving the desired effect that solutions now are
unique.

The shapes of the single subpuzzles have changed by these replacements, which
might imply unintended interactions between various subpuzzles. However, es-
sentially by the argument given by Holzer and Holzer [HH04] about the minimal
horizontal distance between any two wires and/or gates being at least four, such
undesired interactions do not occur.



Satisfiability Parsimoniously Reduces to the TantrixTM 143

3.3 Input and Output Subpuzzles

The BOOL subpuzzle represents the input gates of the circuit. This subpuzzle
has only two valid solutions, either its output is blue (if the corresponding input
variable is true), or it is red (if the corresponding input variable is false). This
ensures that subsequent subpuzzles can obtain only these two colors as input.

The subpuzzle TEST tests whether the function value computed by the circuit
is true or not. This subpuzzle has only one valid solution, namely that its input
is blue (which means that the circuit evaluates to true).

Obviously, neither of these subpuzzles, BOOL and TEST, do require any
modification, and they are the only subpuzzles from [HH04] not modified. For
completeness, we present them in Figures 9 and 10.

(a) Out: true (b) Out: false (c) Scheme

Fig. 9. Subpuzzle BOOL, see [HH04]

(a) Output (b) Scheme

Fig. 10. Subpuzzle TEST, see [HH04]

3.4 Proof of Theorem 4

We are now ready to prove Theorem 4. Let SAT denote the satisfiability problem.

Lemma 5. SAT parsimoniously reduces to Circuit∧,¬-SAT.

Proof. Note that the problems SAT and Circuit-SAT (which is the same as
Circuit∧,¬-SAT except with OR gates allowed as well) are equivalent under par-
simonious reductions [Pap94]. Since OR gates can be expressed by AND and
NOT gates without changing the number of solutions, this gives a parsimonious
reduction from SAT to Circuit∧,¬-SAT. ❑

Now, the parsimonious reduction from SAT to TRP immediately follows from
Lemma 5 and the construction and the arguments presented in Sections 3.1, 3.2,
and 3.3.



144 D. Baumeister and J. Rothe

4 The Unique TantrixTM Rotation Puzzle Problem Is
DP-Complete Under Randomized Reductions

Valiant and Vazirani introduced randomized polynomial-time reductions in their
work showing that NP is as easy as detecting unique solutions [VV86]. We
will use ≤p

ran to denote their type of reductions. In particular, Valiant and
Vazirani [VV86] proved that Unique-SAT, the unique version of SAT, is ≤p

ran -
complete in DP (see also Chang, Kadin, and Rohatgi [CKR95]).

Theorem 6. 1. Unique-SAT parsimoniously reduces to Unique-TRP.
2. Unique-TRP is DP-complete under ≤p

ran-reductions.

Proof. To prove the first part, note that by Lemma 5 and Theorem 4, we
obtain a parsimonious reduction from SAT to TRP. It follows that Unique-SAT
parsimoniously reduces to Unique-TRP.

The second part follows from the first part and Valiant and Vazirani’s above-
mentioned result that Unique-SAT is ≤p

ran -complete in DP, and from the obvious
fact that Unique-TRP is in DP. ❑

Acknowledgments. We thank the anonymous MCU 2007 referees for their
helpful comments.

References

[Bar04] Barbanchon, R.: On unique graph 3-colorability and parsimonious reduc-
tions in the plane. Theoretical Computer Science 319(1–3), 455–482 (2004)

[BR07] Baumeister, D., Rothe, J.: Satisfiability parsimoniously reduces to the
TantrixTM rotation puzzle problem. Technical Report cs.CC/0705.0915,
ACM Computing Research Repository (CoRR) (May 2007)

[CGH+88] Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V.,
Wagner, K., Wechsung, G.: The boolean hierarchy I: Structural properties.
SIAM Journal on Computing 17(6), 1232–1252 (1988)

[CGH+89] Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V.,
Wagner, K., Wechsung, G.: The boolean hierarchy II: Applications. SIAM
Journal on Computing 18(1), 95–111 (1989)

[CKR95] Chang, R., Kadin, J., Rohatgi, P.: On unique satisfiability and the thresh-
old behavior of randomized reductions. Journal of Computer and System
Sciences 50(3), 359–373 (1995)

[Coo71] Cook, S.: The complexity of theorem-proving procedures. In: Proceedings
of the 3rd ACM Symposium on Theory of Computing, pp. 151–158. ACM
Press, New York (1971)

[Grä90] Grädel, E.: Domino games and complexity. SIAM Journal on Comput-
ing 19(5), 787–804 (1990)

[HH04] Holzer, M., Holzer, W.: TantrixTM rotation puzzles are intractable. Dis-
crete Applied Mathematics 144(3), 345–358 (2004)

[Pap94] Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading
(1994)



Satisfiability Parsimoniously Reduces to the TantrixTM 145

[PY84] Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some
facets of complexity). Journal of Computer and System Sciences 28(2),
244–259 (1984)

[Rot05] Rothe, J.: Complexity Theory and Cryptology. An Introduction to Cryp-
tocomplexity. EATCS Texts in Theoretical Computer Science. Springer,
Heidelberg (2005)

[RR06] Riege, T., Rothe, J.: Completeness in the boolean hierarchy: Exact-Four-
Colorability, minimal graph uncolorability, and exact domatic number
problems – a survey. Journal of Universal Computer Science 12(5), 551–578
(2006)

[Val79] Valiant, L.: The complexity of computing the permanent. Theoretical
Computer Science 8(2), 189–201 (1979)

[VV86] Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. The-
oretical Computer Science 47, 85–93 (1986)



Planar Trivalent Network Computation

Tommaso Bolognesi

CNR-ISTI, Istituto di Scienza e Tecnologie dell’Informazione ”A. Faedo”, 56124,
Pisa, Italy

T.Bolognesi@isti.cnr.it

Abstract. Confluent rewrite systems for giant trivalent networks have
been investigated by S. Wolfram as possible models of space and space-
time, in the ambitious search for the most fundamental, computational
laws of physics. We restrict here to planar trivalent nets, which are shown
to support Turing-complete computations, and take an even more radi-
cal, approach: while operating on network duals, we use just one elemen-
tary rewrite rule and drive its application by a simple, fully deterministic
algorithm, rather than by pattern-matching. We devise effective visual
indicators for exploring the complexity of computations with elementary
initial conditions, consisting of thousands of graphs, and expose a rich
variety of behaviors, from regular to random-like. Among their features
we study, in particular, the dimensionality of the emergent space.

Keywords: Digital physics, trivalent network, complexity indicator,
cellular automata, two-dimensional Turing machine, turmite, emergent
space.

1 Introduction

The idea that physical laws and the whole evolution of our universe ultimately
reduce just to computation was first proposed by K. Zuse in 1967 [1,2], and
later investigated by scientists such as E. Friedkin, G. ’t Hooft, J. Schmidhuber,
S. Lloyd. ’Digital Physics’ suggests that the entire history of the universe is
precisely captured by the discrete, deterministic output of a short program, and
has been recently further developed and popularized by S. Wolfram, with his
New Kind of Science (NKS) [3].

As of today, no small program has been identified that can reproduce, say,
some fundamental physical constants. However, an intuitively convincing argu-
ment in support of the computational physics conjecture is represented by the
spectacular properties of simple programs such as elementary cellular automa-
ton (ECA) n. 110, in which particles emerge that seem to obey the laws of some
artificial physics [3]. A remarkable property of this elementary automaton is that
it is Turing-complete [4], and this is an obvious requirement for any candidate
computational model of physics.

A weak aspect of cellular automata is that they assume the existence of an
infinite space of cells, rather than letting space and spacetime emerge from the

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 146–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Planar Trivalent Network Computation 147

computation itself. For this reason, [3] proposes dynamic networks as a more
adequate model for fundamental physics, with three dimensional space as one of
the required emergent properties.

Networks for space and spacetime: the NKS approach. NKS adopts the idea that
all the features of our universe emerge purely from properties of space; at the
lowest level, space could be a giant, undirected, trivalent network – a graph in
which all nodes have degree three. We shall use the term trinet for denoting this
minimally structured type of object.

The distance between two nodes is the length of the shortest path between
them, and we say that a trinet yields a space of dimensionality k when, given
a generic node n, the number of nodes that are at distance at most d from n
grows like dk. In spite of its simplicity, a trinet can achieve any dimensionality:
a ladder-shaped trinet yields a one dimensional space, the hexagonal grid yields
a two dimensional space, and so on. In general, a trinet can ’implement’ the
structure of any graph, by replacing any node n of degree r > 3 by a cycle of r
trivalent nodes n1, ..., nr, where each edge originally insisting on n now insists
on a different ni. (This is similar to replacing the crossing of some roads by a
roundabout.)

According to Wolfram, on a small scale the net will most likely look quite
random, but on a larger scale it must be arranged so as to correspond to ordinary
three-dimensional space, and this feature should be preserved by the rules that
make it evolve. A variety of rewrite rules can be considered, together with policies
for applying them. The most elementary rule is depicted by the shaded elements
of Figure 1: in this paper, we call it node tripartition. This rule transforms a

Fig. 1. Node tripartition for trinets (grey) is face tripartition for trinet duals (black)

single node into a cluster of three nodes, and, in this respect, is analogous to the
rules of a context-free grammar. Interestingly, this transformation plays a role,
with its reverse, also in the theory of Loop Quantum Gravity 1, and is one of
just two fundamental transformations singled out by L. Smolin in his divulgative
paper on this theory [5].

By applying the rule in parallel to each node, at each step, starting from a
simple trinet such as the one formed by the edges of a tetrahedron, regular,
1 Loop Quantum Gravity claims that both space and time are quantized, and uses

spin networks (first introduced by R. Penrose in 1964) for modeling the quantum
states of space. A spin network is a graph where every node represents an elementary
”quantum of volume” and every link is a ”quantum of area” delimiting it.



148 T. Bolognesi

nested structures can be obtained. Indeed, context-free rewrite systems cannot
produce, by themselves, more complexity than nesting. For this reason Wolfram
investigates more elaborate trinet evolution systems, in which rewrite rules are
somewhat analogous to those of context-dependent grammars, and transform
clusters of nodes.

However, graph rewriting involves nondeterminism: if many rules are poten-
tially applicable to the current trinet, which one should be applied? Using rule
priorities does not eliminate nondeterminism completely, since even a single rule
could be applicable at different locations; and insisting on applying all applicable
rules simultaneously does not solve the problem, since several maximal sets of
rewritings may be simultaneously enabled.

One solution explored by Wolfram consists in enriching the rewriting process
by state information that records the age of nodes (see [3], p. 511, for details).
Another approach consists in restricting to confluent rewrite systems, that al-
ways guarantee the same evolution in-the-large, regardless of nondeteminism
in-the-small. This idea can be made precise by the notion of causal network,
which is proposed in [3] for modeling spacetime.

A causal network is a directed graph in which nodes represent events (e.g. cell
updating) and edges represent their causal relationship (as induced, e.g., by the
cell updating process). Causal invariance is the property of a rewrite system to
yield exactly the same causal network regardless of the rule application order.
If a rewrite system is causal invariant, then its causal net retains the essential,
unique partial order of events behind any contingent total ordering.

While a more detailed account of Wolfram’s ideas and techniques for network
rewriting is out of the scope of this paper, we wish to point out three problematic
aspects of them:

– The idea to resolve nondeterminism by using time stamps appears as unnat-
ural as, say, the requirement of a global clock for synchronizing rewritings
in cellular automata.

– Causal invariance is an elegant property, that guarantees uniqueness in rep-
resenting computations. However, the search for systems that guarantee this
property involves a number of technical difficulties (see [3], p. 493), and the
sufficient conditions ”that all the replacements that appear in the rules should
be for clusters of nodes that can never overlap themselves or each other” is
perhaps too restrictive.

– While the computations of elementary cellular automata lend themselves to
a very effective visualization, the direct representation of sequences of trinets
of growing size is not ideal for visual inspection.

Our paper is mainly motivated by the need to overcome these limitations.

2 Planar Trinets, Duals, and Computational Universality

In this paper we shall restrict to connected, planar trinets. A graph is planar
when it can be drawn on (or ’embedded’ in) the plane so that no edges intersect;



Planar Trivalent Network Computation 149

the plane is thus partitioned into polygonal faces, including the external one, of
infinite size. 2 In our developments we shall take advantage of the well known,
dual representation of a planar graph, which is itself a planar graph representing
the adjacency relations between faces of the original graph (Figure 1). The dual
operation d is the inverse of itself: d(d(G)) = G. A planar trinet may in general
include self-loops and/or double edges, which delimit degenerate polygonal faces.
A graph without self-loops and double edges is called simple.

The following two facts can be easily established about planar trinets and
their duals. The proofs can be found in [6].

Proposition 1. A trinet may only have an even number of vertices.

Proposition 2. The dual D of a simple, planar trinet is a planar graph that
satisfies the following properties: (i) D is simple; (ii) each node has degree d ≥ 3;
(iii) each face is a triangle.

Note that the dual of a simple planar graph which is not a trinet, is not nec-
essarily a simple graph. An example is provided, later, by the leftmost pair of
graphs in Figure 3.

The choice of using only planar trinets is not excessively restrictive. First,
planar trinets may well yield dimensionalities other than 2; for example, two
trinets with fractal dimensionalities log2 3 and log3 7 are shown in [3] (p. 509).
Second, planar trinet rewriting has maximum computing power, as established
by the following proposition, whose proof is given in the Appendix.

Proposition 3. Planar trivalent network rewriting is Turing-complete.

3 A Fully Deterministic Planar Trinet Growth Algorithm

The system of 60 rules used in the Appendix for proving the Turing-completeness
of planar trinet rewriting is fully deterministic, but the price for this is to define
rules that manipulate relatively complex, ad-hoc sub-trinets. Defining a deter-
ministic rewrite system that handles simpler sub-trinets would be much harder.

On the other hand, in line with the NKS style of investigation, we are in-
terested in exploring the computational universe created by very simple rewrite
systems, and in this paper, in particular, we take the extreme approach of choos-
ing just one rule.

The rule we choose is node tripartition; since our algorithm is conveniently
formulated in terms of trinet duals, we show in the already introduced Figure 1
how this rule operates on them, assuming simple trinets (in grey), thus simple
trinet duals (in black). In terms of duals, the rule consist in placing a new node
inside a face (which must be a triangle, by Proposition 2) and splitting the
latter into three triangular faces. Used without further algorithmic control, the
tripartition rule induces the maximum possible nondeterminism, since it can
2 This external face has no real special status, as it appears by drawing the graph on

a sphere.



150 T. Bolognesi

be applied, by definition, to every node of any trinet, or, equivalently, to any
face of the dual! Thus, we need a way, as simple as possible, to introduce full
determinism in the rewriting process.
Informal description of the algorithm. The idea, illustrated in Figure 2, is to
move across the dual graph by unit steps, from node to node, e.g. from S to T0,
without jumping, in a sort of (deterministic!) brownian motion, and to use the
following simple criterion for selecting the face to split. When node T0 is reached,

Fig. 2. Finding the triangle (T1, T2, T3) for the tripartition, coming from node S

coming from node S, the cycle of radius 1 centered in T0 is considered, and the
nodes T 1 and T 2 at distances k and k + 1 from S, moving counterclockwise,
are selected, with T0 itself, as the vertices of the triangle to be split. We have
explored two variants, corresponding to different ways to define k. For space
reasons, in this paper we discuss only the case in which k is a (small), constant
nonnegative integer (see [6] for the other case). Note that k may be larger than
the degree of T0, corresponding to more than a complete cycle around that node.

The computation step assumes and returns graphs that are simple. Therefore,
as an initial condition we choose the simplest trinet dual which is simple: this
is the triangular graph in the lower-left corner of Figure 3. Note that the trinet
corresponding to this triangle, shown above it, is not simple. Yet, any application
of the node tripartition rule to this trinet yields the tetrahedron trinet, whose
dual is the tetrahedron graph itself. Regardless of the different choices for k, all

Fig. 3. Trinets (black nodes) and trinet duals (white nodes) for the common prefix of
the deterministic computations based on the tripartition rule

computations share the initial steps illustrated in Figure 3, and all the produced
trinet duals, as well as all the corresponding trinets, are simple, except for the
first trinet. Let us now analyze the computations of the algorithm, whose short
Mathematica code can be found in [6].



Planar Trivalent Network Computation 151

4 Visual Indicators and Computations with Constant k

One of the key lessons from [3] is that important clues about the computing
power of a given formal model can be obtained by inspecting the ’shape’ of its
computations, beyond the strategy of using it to emulate a reference model of
known power. However, different models lend themselves to different visualiza-
tion techniques, not all of which are as effective as the ECA diagrams thoroughly
studied in [3]. Furthermore, when computations involve complex data structures,
and complete visualization is unmanageable, the problem arises of which aspects
to expose, as potential indicators of computational complexity. (A taxonomy of
visual complexity indicators is proposed in [7].)

Trinet computation precisely suffers from this difficulty, since periodicity, nest-
ing, pseudo-randomness, or other emergent properties are hardly detected by di-
rectly inspecting sequences of graphs that grow huge. But a computation of our
algorithm, for a given k, is essentially a sequence of (TND, fromNode, toNode)
triples, and this provides us with further parameters for visualizing its char-
acter, simpler than the complex adjacency-list-based graph structure TND. In
particular, we choose two indicators:

Face size - the number of neighbors of fromNode in the current trinet dual
TND, corresponding to the number of edges in the fromFace of the trinet.

Face id - the progressive id-number of the current face.

Both parameters offer a very localized view at the computation; the latter, in
particular, is useful for revealing the extent to which the computation may go
back to previously visited regions. Note that each time a polygonal face is visited,
its size is increased by one.

Figure 4 shows the dynamics of our indicators for some constant values of k,
and includes, for each computation, the plot of the final graph – a trinet dual.

When k = 1 the computation is very regular: parameter Face size indicates
that the current fromFace stabilizes in three steps to an hexagon, and Face id
indicates that the algorithm never returns to an already visited face. The graph
in the right column reveals the linear overall structure of the trinet dual.

When k = 2 the computation is still regular, but more interesting. There is
no bound to the size of the fromFace, and each face, except for face 1, is visited
infinitely often, so that its size grows unbounded too. It turns out that face h,
with h = 2, 3, . . . is the fromFace in steps (2h − 3)2n, for n = 1, 2, . . ., except
that face 1, not face 2, is the fromFace in step 1. Face 1 is a fromFace only once,
yet its degree is increased by 1 at each step, so that it is always the face with
highest degree.

The value k = 3 yields a computation which stabilizes after 1229 steps to
a cyclic behaviour with period 140, written, for short, 1229/140*. Similarly,
case k = 9 yields a 7/7* computation. In case k = 6 the dynamics of the two
indicators behaves randomly for 79 steps and then stabilizes to visiting hexagons,
while never returning to already visited faces. The random-like and the regular
parts are clearly visible in the final graph. The case k = 7 (not shown in the



152 T. Bolognesi

Fig. 4. ’Face size’, ’Face id’, and last trinet dual for computations with fixed k

picture) is quite complex, and it was necessary to look at about 30000 steps to
discover a periodic, 27450/850* computation.

In conclusion, all computations illustrated for the variant of the algorithm
under consideration are qualitatively similar, with the remarkable exception of
the case k = 2, where control goes back infinitely often to infinitely many faces.

5 Emergent Dimensionality

What is the dimensionality of the spaces – the trinet dual and, more importantly,
the trinet itself - created by the computations of the tripartition algorithm?

In the cases when the periodic structure of the last trinet dual graph is sim-
ple and clearly visible, it would seem natural to conclude that the graph has
dimensionality one. Informally, the argument is as follows. These periodic and
planar networks, whose nodes have bounded degree, appear as embedded on a
cylindrical surface with uniform node density, yielding the long and thin graph
structures observed in some of the plots. Then, their duals are structurally equiv-
alent to them: periodic, with bounded-degree nodes, and embedded on the same
cylindrical surface, with uniform node density. Thus, the original trinets are
one-dimensional too.

Let us now present a more rigorous argument; this is useful also in light of
the fact that, in some cases, we may have doubts about the precise structure
of the graphs, whose appearance depends on the specific visualization method.



Planar Trivalent Network Computation 153

Plots like those for the Face size and Face id indicators, though presenting less
information (and, indeed, due to that) are more effective in exposing regularity.
Let us then consider a Multiple Face id plot that visualizes, for each step, not
only the identifier of the current node T0, but also those of the other two nodes
T1 and T2 of the triangle being split, and the identifier X of the new node being
created (an example of this type of diagram is found in [6]). Each node on the
diagonal is a new node being created, while the three nodes below it, to which the
new node is connected by three newly introduced edges, indentify the triangle
being split. The advantage of this plot is revealed by the following proposition,
which is proved in [6].

Proposition 4. If, for a given computation c, all points of the (infinite) Mul-
tiple face id plot fall in the region between two parallel lines, then the (infinite)
trinet of c is at most one-dimensional.

It turns out that all the computations of the considered group, except for the
case k = 2, satisfy the bounding condition of Proposition 4.

Let us finally consider the last case left (see Figure 4, k = 2). In the graph
for the last trinet dual, a central node with high degree is clearly visible: this is
node 1, whose degree is incremented at every step. We have pointed out earlier
that all the other nodes have their degrees increased infinitely often, although at
a rapidly decreasing rate. This circumstance is perhaps better visualized by the
radial layout of Figure 5 (left), which hints at some nested structure. If we now

Fig. 5. ’Radial’ / ’SpringElectrical’ layouts for last trinet dual of a 256-step computa-
tion, with k = 2, and with node 1 and associated edges included / removed

remove node 1, and the edges that connect it to all the other nodes, a nested,
fractal structure clearly emerges, at least when using the SpringElectrical layout
(center). By connecting back node 1 to all the nodes in this layout, and taking
the dual of the resulting graph, we readily get the original trinet, which is a
double binary tree with leaves connected in circle (right).

The node count of these trinets grows exponentially with their diameter; and,
given any specific (large) trinet, and a specific reference node r in it, the size
of the concentric node layers around r grows exponentially too, with minor
deviations as r is picked closer to the tree boundary. In this respect, the above



154 T. Bolognesi

computation is interesting because it proves that our algorithm can produce
trinet-based spaces that go well beyond one dimension.

6 Conclusions

We have investigated the computing power of planar trivalent networks (’trinets’).
On one hand we have proved that they are powerful in a traditional sense, since ap-
propriate rewrite rules make them Turing-complete. On the other hand, we have
explored their power by an experimental, NKS-type type of investigation and have
visualized, by means of ad-hoc indicators, a variety of features. This was done by
using just one rewrite rule – node-tripartition, a simple deterministic algorithm,
and an elementary initial condition – a triangle. The contrast between this sim-
plicity and the emergent complexity is perhaps as remarkable as that observed
with cellular automata. However, the crucial advantage of the dynamic network
approach over cellular automata is that space is not assumed, but created. We be-
lieve that, with this paper, we have proposed an original way both to create and
to observe trinet-based computations, thus contributing to the study of a portion
of the computational universe that, according to some researchers, might offer im-
portant insights to the ultimate law(s) of the natural universe.

Our simple indicators have been quite useful in spotting the regularity of
several computations, for which plain representation of complete graphs is more
costly and visually less effective. In particular, we point out two results.

1. For parameter k = 2 our algorithm yields a specific, regular computation in
which infinitely many faces of the growing trinet are updated infinitely often:
a dynamic network is obtained in which no part is permanently abandoned.
This appealing property was spotted only once; it would be interesting to
observe it also in random-like computations. It is remarkable that the nested
structure of this trinet (Figure 5) be obtained directly by an algorithm that
operates only locally, and only with unit-step moves.

2. We have found some complex computations that involve transient phases as
well as periods in the order of thousands of steps (considering also a variant
not covered here). Just for comparison, the computation of ECA 110 with
the elementary initial state of one black cell, has a transient of about 2500
steps, and stabilizes to a shifted-period of 240 steps. In this respect we may
classify some of our computations as class 4, according to Wolfram’s scheme.

One desirable result that we have not yet obtained is to find class 3 trinet
computations whose random-like behavior never stabilizes, similar to ECA 30.

There are similarities between our approach and two-dimensional Turing ma-
chines, sometimes called ’turmites’, which move by unit steps on an infinite grid.
But with turmites, again, space is given, and its regular static structure is made
of stateful cells. In our approach space is created, its topology varies, and its
locations are stateless.

A side result of our paper, that might possibly have some practical application,
is that every periodic portion of our computations corresponds to a regular tiling



Planar Trivalent Network Computation 155

of the plane; some of these involve the usage of a finite but large set of different
polygons.

In [3] it is implicitly assumed that expansion rules such as node tripartition
should be complemented with rewrite rules that decrease the number of nodes
in the network. An obvious extension of our work would consist in considering
further rules, while still driving their application by deterministic procedures.

It may be useful to study variants of our algorithm that can handle trinets with
loops and double edges. By dropping the geometric, trinet-based interpretation,
and by looking at the algorithm as just an abstract list manipulation procedure,
one might perhaps achieve further simplifications, and make it possible to start
from even simpler initial conditions.

Acknowledgment. I wish to thank Marco Tarini, at CNR-ISTI, for several
lively discussions on the topics covered in this paper, and Jason Cawley for his
encouraging comments on the manuscript.

References

1. Zuse, K.: Rechnender raum. Elektronische Datenverarbeitung 8, 336–344 (1967)
2. Zuse, K.: Calculating space (rechnender raum), Tech. rep., MIT, Cambridge, Mass.,

technical Translation AZT-70-164-GEMIT (1970)
3. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)
4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),

1–40 (2004)
5. Smolin, L.: Atoms of space and time. Scientific American, 56–65 (2004)
6. Bolognesi, T.: Planar trivalent network computation, Tech. rep., CNR-ISTI, Pisa,

2006-TR-41 (December 2006)
7. Bolognesi, T.: Behavioural complexity indicators for process algebra: the NKS ap-

proach, Journal of Logic and Algebraic Programming (to appear)

7 Appendix A - Proof

Proposition 3. Planar trivalent network rewriting is Turing-complete.

Proof. It is sufficient to exhibit a planar trinet rewrite system that simulates a
universal Turing machine (TM). Thus we consider the smallest known universal
TM, which was introduced in [3] (p. 707), and uses a tape alphabet of 5 symbols
{1,2,3,4,5} and two states {s1, s2}; Table 1 provides its transitions. Figure 6
shows a coding scheme for two-state, five-symbol TMs (which can be directly
extended to any other TM). The idea is to code each cell, including a tape
symbol and possibly control state information, by an elementary sub-trinet.
The trinet in (a), shown in two possible layouts, illustrates the overall structure
of a coded TM configuration. The dotted edge stands for a sequence of at least
one of the elementary sub-trinets further detailed below, which code the cells
of the TM that are explicitly assigned an initial value, or are written during



156 T. Bolognesi

Table 1. State table for smallest universal Turing machine

1 2 3 4 5

s1 s1, 2, +1 s1, 1, +1 s1, 1, +1 s2, 5, +1 s2, 4, -1

s2 s1, 4, -1 s1, 1, +1 s1, 5, +1 s2, 5, +1 s2, 3, -1

Fig. 6. Building blocks for the trinet coding a two-state, five-symbol Turing machine

the computation. The two triangles sharing one edge code the infinite portion
of the tape not yet reached by the TM head, whose cells are occupied by the
’background’ symbol 1. In (b) we show the coding of the pure tape symbols. In
(c) (resp. (d)) we enrich this coding for representing the presence, on the tape
cell, of the TM head in state s1 (resp. s2). Note that the elementary sub-trinets
in (c) and (d) are linked only for visual clarity; such sequences may not appear
in any computation, due to the presence of multiple instances of control state
information!

Defining trinet rewrite rules that implement Table 1 is easy. For example, the
six rewrite rules corresponding to the lower-left slot in the table, with the head
in state s2 positioned on a cell containing a ’1’, are depicted in Figure 7. The
rewriting schema on the left, where the dots denote the coding of some of the
tape symbols, accounts for five different rewrite rules; the rewriting on the right
handles the case of the head moving to a portion of the tape not visited before.
In conclusion, we need a total of 60 rewrite rules.

Fig. 7. Trinet rewrite rules coding the lower-left slot of Table 1



Planar Trivalent Network Computation 157

In devising the coding, one has to make sure that the rewrite rules match only
the intended sub-trinets. One way to check this is to reason in terms of patterns
of polygonal faces. The impossibility to apply a rewrite rule to the wrong sub-net
is then guaranteed by the observation that:

– the sub-net coding a plain cell must only include polygons of arities 3 and 4;
– the sub-net coding a cell with control state s1 must only include polygons

of arities 3, 4, 5;
– the sub-net coding a cell with control state s2 must only include polygons

of arities 3, 4, 6;
– the net coding the whole TM configuration must always include a polygon

of arity at least 8 (and the patient reader may check that the simplest initial
configuration, with the tape uniformly filled by 1’s, is coded by a planar
trinet that already includes two octagonal faces). � 

Note that the trinets used for the simulation above are simple (no loops or double
edges).



On the Power of Networks
of Evolutionary Processors

Jürgen Dassow1 and Bianca Truthe2,


1 Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany
2 Universitat Rovira i Virgili, Facultat de Lletres, GRLMC

Plaça Imperial Tàrraco 1, E-43005 Tarragona, Spain

Abstract. We discuss the power of networks of evolutionary processors where
only two types of nodes are allowed. We prove that (up to an intersection with a
monoid) every recursively enumerable language can be generated by a network
with one deletion and two insertion nodes. Networks with an arbitrary number of
deletion and substitution nodes only produce finite languages, and for each finite
language one deletion node or one substitution node is sufficient. Networks with
an arbitrary number of insertion and substitution nodes only generate context-
sensitive languages, and (up to an intersection with a monoid) every context-
sensitive language can be generated by a network with one substitution node and
one insertion node.

1 Introduction

Motivated by some models of massively parallel computer architectures (see [12], [11])
networks of language processors have been introduced in [7] by E. CSUHAJ-VARJÚ

and A. SALOMAA. Such a network can be considered as a graph where the nodes are
sets of productions and at any moment of time a language is associated with a node.
In a derivation step any node derives from its language all possible words as its new
language. In a communication step any node sends those words to other nodes where
the outgoing words have to satisfy an output condition given as a regular language, and
any node takes words sent by the other nodes if the words satisfy an input condition
also given by a regular language. The language generated by a network of language
processors consists of all (terminal) words which occur in the languages associated
with a given node.

Inspired by biological processes, J. CASTELLANOS, C. MARTÍN-VIDE, V. MI-
TRANA and J. SEMPERE introduced in [4] a special type of networks of language
processors which are called networks with evolutionary processors because the allowed
productions model the point mutation known from biology. The sets of productions
have to be substitutions of one letter by another letter or insertions of letters or deletion
of letters; the nodes are then called substitution node or insertion node or deletion node,


 The research was supported by the Alexander von Humboldt Foundation of the Federal Re-
public of Germany.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 158–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Power of Networks of Evolutionary Processors 159

respectively. Results on networks of evolutionary processors can be found e. g. in [4],
[5], [3], [2]. In [5] it was shown that networks of evolutionary processors are univer-
sal in that sense that they can generate any recursively enumerable language, and that
networks with six nodes are sufficient to get all recursively enumerable languages. In
[2] the latter result has been improved by showing that networks with three nodes are
sufficient. The proof uses one node of each type (and intersection with a monoid).

Therefore it is a natural question (rised already in [2]) to study the power of networks
with evolutionary processors where the nodes have only two types, i. e.,

(i) networks with deletion nodes and substitution nodes (but without insertion nodes),
(ii) networks with insertion nodes and substitution nodes (but without deletion nodes),

and
(iii) networks with deletion nodes and insertion nodes (but without substitution nodes).

In this paper we investigate the power of such systems and study the number of
nodes sufficient to generate all languages which can be obtained by networks of the
type under consideration. We prove that networks of type (i) and (ii) produce only
finite and context-sensitive languages, respectively. Every finite, context-sensitive or
recursively enumerable language can be generated by a network of type (i) with one
node, by a network of type (ii) with two nodes or by a network of type (iii) with three
nodes, respectively.

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language theory
(see e. g. [14]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over V (including the empty word λ).
The length of a word w is denoted by |w|.

In the proofs we shall often add new letters of an alphabet U to a given alphabet V .
In all these situations we assume that V ∩U = ∅.

A phrase structure grammar is specified as a quadruple G = (N,T,P,S) where N is
a set of nonterminals, T is a set of terminals, P is a finite set of productions which are
written as α→ β with α ∈ (N ∪T )∗ \T ∗ and β ∈ (N ∪T )∗, and S ∈N is the axiom.
The grammar G is called monotone, if |α| ≤ |β| holds for every rule α→ β of P .

A phrase structure grammar is in Kuroda normal form if all its productions have one
of the following forms:

AB → CD, A→ CD, A→ x, A→ λ where A,B,C,D ∈N, x ∈N ∪T.

We call a production α→ β a
– substitution if |α|= |β|= 1,
– deletion if |α|= 1 and β = λ.

We introduce insertions as a counterpart of a deletion. We write λ → a, where a is a
letter. The application of an insertion λ→ a derives from a word w any word w1aw2

with w = w1w2 for some (possibly empty) words w1 and w2.
We now introduce the basic concept of this paper, the networks of evolutionary

processors.



160 J. Dassow and B. Truthe

Definition 1
(i) A network of evolutionary processors (of size n) is a tuple

N = (V,N1,N2, . . . ,Nn,E,j)

where
– V is a finite alphabet,
– for 1≤ i≤ n, Ni = (Mi,Ai,Ii,Oi) where

• Mi is a set of evolution rules of a certain type, i. e., Mi⊆{a→ b | a,b∈V }
or Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

• Ai is a finite subset of V ∗,
• Ii and Oi are regular sets over V ,

– E is a subset of {1,2, . . . ,n}×{1,2, . . . ,n}, and
– j is a natural number such that 1≤ j ≤ n.

(ii) A configuration C of N is an n-tuple C = (C(1),C(2), . . . ,C(n)) if C(i) is a
subset of V ∗ for 1≤ i≤ n.

(iii) Let C = (C(1),C(2), . . . ,C(n)) and C′ = (C′(1),C′(2), . . . ,C′(n)) be two con-
figurations of N . We say that C derives C′ in one

– evolution step (written as C =⇒ C′) if, for 1 ≤ i ≤ n, C′(i) consists of all
words w ∈ C(i) to which no rule of Mi is applicable and of all words w for
which there are a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

– communication step (written as C � C′) if, for 1≤ i≤ n,

C′(i) = (C(i)\Oi)∪
⋃

(k,i)∈E

C(k)∩O(k)∩ I(i).

The computation of N is a sequence of configurations

Ct = (Ct(1),Ct(2), . . . ,Ct(n)), t≥ 0,

such that
– C0 = (A1,A2, . . . ,An),
– for any t≥ 0, C2t derives C2t+1 in one evolution step: C2t =⇒ C2t+1,
– for any t≥ 0, C2t+1 derives C2t+2 in one communication step: C2t+1 �C2t+2.

(iv) The language L(N ) generated by N is defined as

L(N ) =
⋃
t≥0

Ct(j)

where Ct = (Ct(1),Ct(2), . . . ,Ct(n)), t≥ 0 is the computation of N .

Intuitively a network with evolutionary processors is a graph consisting of some, say
n, nodes N1,N2, . . . ,Nn (called processors) and the set of edges given by E such that
there is a directed edge from Nk to Ni if and only if (k,i) ∈ E. Any processor Ni

consists of a set of evolution rules Mi, a set of words Ai, an input filter Ii and an
output filter Oi. We say that Ni is a substitution node or a deletion node or an insertion
node if Mi ⊆ {a→ b | a,b ∈ V } or Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },
respectively. The input filter Ii and the output filter Oi control the words which are



On the Power of Networks of Evolutionary Processors 161

allowed to enter and to leave the node, respectively. With any node Ni and any time
moment t ≥ 0 we associate a set Ct(i) of words (the words contained in the node at
time t). Initially, Ni contains the words of Ai. In a derivation step we derive from Ct(i)
all words applying rules from the set Mi. In a communication step any processor Ni

sends out all words Ct(i)∩Oi (which pass the output filter) to all processors to which
a directed edge exists (only the words from Ct(i) \Oi remain in the set associated
with Ni) and, moreover, it receives from any processor Nk such that there is an edge
from Nk to Ni all words sent by Nk and passing the input filter Ii of Ni, i. e., the
processor Ni gets in addition all words of (Ct(k)∩Ok)∩Ii . We start with a derivation
step and then communication steps and derivation steps are alternately performed. The
language consists of all words which are in the node Nj (j is chosen in advance) at
some moment t, t≥ 0.

3 Networks with Only Deletion and Substitution Nodes

In this section we study the power of networks which have only deletion and substitution
nodes but no insertion nodes.

Lemma 1. For any networkN of evolutionary processors, which has only deletion and
substitution nodes, L(N ) is a finite language.

Proof. Let N = (V,N1,N2, . . . ,Nn,E,j) be a network, which has only deletion and
substitution nodes. Obviously, any evolution step and any communication step do not
increase the length of a word contained in some Ct(i), 1 ≤ i ≤ n, t ≥ 0. Therefore
L(N ) contains only words of length at most

max{|w| | w ∈Ai, 1≤ i≤ n}.

Hence L(N ) is a finite language.

On the other hand, every finite language can be generated by a network of evolutionary
processors without insertion nodes.

Lemma 2
(i) For any finite language L, there is a network N of evolutionary processors which

has exactly one substitution node such that L(N ) = L.
(ii) For any finite language L, there is a network N of evolutionary processors which

has exactly one deletion node such that L(N ) = L.

Proof. Obviously, the networkN =(alph(L)∪{a,b},({a→ b},L,∅,∅),∅,1) generates
L and its only node is a substitution node. Therefore part (i) is shown.
In order to prove part (ii), we change the system by using a→ λ instead of a→ b.

Combining the two preceding lemmas we get immediately the following statement.

Corollary 1. The family of languages which can be generated by networks of evo-
lutionary processors which have only deletion and substitution nodes coincides with
L(FIN).



162 J. Dassow and B. Truthe

4 Networks with Only Insertion and Substitution Nodes

In this section we study the power of networks which have only insertion and substitu-
tion nodes but no deletion nodes.

Lemma 3. For any networkN of evolutionary processors which has only insertion and
substitution nodes, L(N ) is a context-sensitive language.

Proof. The proof can be given by a simulation of the work of networks of evolution-
ary processors by context-sensitive contextual grammars which only generate context-
sensitive languages (see [9]). For a detailed proof we refer to [10].

Lemma 4. For any context-sensitive language L, there are a set T and a network N
of evolutionary processors with exactly one insertion node and exactly one substitution
node such that L = L(N )∩T ∗.

Proof. Let L be a context-sensitive language and G = (N,T,P,S) be a grammar in
Kuroda normal form with L(G) = L. Let R1,R2, . . . ,R7 be the following sets:

R1 = {A→ p0, p0 → x | p = A→ x ∈ P, A ∈N, x ∈ T } ,

R2 = {A→ p1 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } ,

R3 = {B → p2 | p = AB → CD ∈ P, A,B,C,D ∈N } ,

R4 = {p1 → p3 | p ∈ P } ,

R5 = {p2 → p4 | p ∈ P } ,

R6 = {p3 → C | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } ,

R7 = {p4 →D | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } .

We construct a network of evolutionary processors

N = (V,(M1,{S } ,I1,O1),(M2,∅,I2,V
∗),{(1,2),(2,1)} ,1)

with

V = N ∪T ∪{p0,p1,p2,p3,p4 | p ∈ P } ,

M1 = R1∪R2∪R3∪R4∪R5∪R6∪R7,

I1 = (N ∪T )∗ {p1p2 | p = A→ CD ∈ P }(N ∪T )∗,
O1 = V ∗ \ ((N ∪T )∗Ō(N ∪T )∗),

where

Ō = {λ}∪{p1 | p = AB → CD ∈ P }
∪{p1p2 | p = AB → CD ∈ P }
∪{p3p2 | p = A→ CD ∈ P or p = AB → CD ∈ P }
∪{p3p4 | p = A→ CD ∈ P or p = AB → CD ∈ P }
∪{Cp4 | p = A→ CD ∈ P or p = AB → CD ∈ P } ,



On the Power of Networks of Evolutionary Processors 163

and

M2 = {λ→ p2 | p = A→ CD ∈ P } ,

I2 = (N ∪T )∗ {p1 | p = A→ CD ∈ P }(N ∪T )∗.

First, we show that any application of a rule of the grammar G can be simulated by the
network N . In the sequel, A, B, C, D are non-terminals, x is a terminal and the word
w1w2 ∈ (N ∪T )∗.

Case 1. Application of the rule p = A→ x ∈ P to a word w1Aw2.
This is achieved by the rules A→ p0 ∈ R1 and then p0 → x ∈ R1. After each of
these two evolution steps, the word does not leave the node.

Case 2. Application of the rule p = AB → CD ∈ P to a word w1ABw2.
The word w1ABw2 is changed to w1p1Bw2 (by an appropriate rule of R2) which
cannot pass the output filter, so it remains in the first node. It is then changed to
w1p1p2w2 (by R3), and further, without leaving the first node, to w1p3p2w2 (by
R4), to w1p3p4w2 (by R5), to w1Cp4w2 (by R6) and finally to w1CDw2 (by R7).
This word is not communicated in the next step, since it cannot pass the output
filter. Hence the application of the rule p = AB → CD ∈ P to a word w1ABw2

can be simulated in six evolution steps (the six corresponding communication steps
have no effect).

Case 3. Application of the rule p = A→ CD ∈ P to a word w1Aw2.
The word w1Aw2 is changed to w1p1w2 (by an appropriate rule of R2). This word
passes the output filter of the first node and the input filter of the second one. There,
the symbol p2 is inserted behind p1 and the obtained word w1p1p2w2 is communi-
cated back to the first node. There, the word is changed to w1p3p2w2 (by R4) and
further as in the Case 2 to the words w1p3p4w2 (by R5), w1Cp4w2 (by R6) and
w1CDw2 (by R7). This word is not communicated in the next step, since it cannot
pass the output filter. Hence the application of the rule p = A→CD ∈ P to a word
w1Aw2 can be simulated in six evolution steps and two effective communication
steps (the other four have no effect).

Since the start symbol S also belongs to the language of the network, any derivation
step in the grammar G can be simulated by evolution and communication steps in the
network N . Hence, we have the inclusion L(G) ⊆ L(N ) ∩ T ∗. We show now that
L(N )∩T ∗ ⊆ L(G).

Let F (G) be the set of all sentential forms generated by the grammar G. We show
that L(N )∩ (N ∪T )∗ ⊆ F (G). Then L(N )∩T ∗ ⊆ L(G) follows immediately.

The start symbol S belongs to both sets L(N )∩ (N ∪T )∗ and F (G). We now con-
sider a word w = w1Aw2 of the set L(N )∩ (N ∪T )∗ with A ∈N . The word is in the
first node and it is not communicated, so we start with an evolution step.

Case 1. Application of a rule A→ p0 ∈R1.
This yields the word w1p0w2 in the first node. Due to the output filter, it remains
there. Thereafter, the rule p0 → x ∈ R1 has to be applied or we loose the word.
Hence, these two evolution steps represent the derivation w1Aw2 =⇒w1xw2 in G.



164 J. Dassow and B. Truthe

Case 2. Application of a rule A→ p2 ∈R3.
This leads to the word w1p2w2 in the first node, which is then sent out. Since the
second node does not accept it, the word is lost.

Case 3. Application of a rule A→ p1 ∈R2.

There are two possibilities for the rule p that belongs to p1.

Case 3.1. p = A→ CD. In this case, the word w1p1w2 is sent out and caught by
the second node. The second node inserts a q2. If q2 is not p2 or if it is p2 but not
inserted immediately behind p1, then the obtained word is not w1p1p2w2. It is
sent back but not accepted by the first node and therefore lost. If p2 is inserted
at the correct position, then the word w1p1p2w2 enters the first node. We set
w′

2 = w2 and continue with the word w1p1p2w
′
2 to the next evolution step.

Case 3.2. p = AB → CD. In this case, the word w1p1w2 remains in the first
node. If the word after the next evolution step is not w1p1p2w

′
2 with w2 = Bw′

2,
then it is sent out, because applying any other rule of R1∪R2∪R3∪R4 (rules
of R5, R6 and R7 are not applicable) yields a word which passes the output
filter. Since it cannot pass the input filter of the other node, the word gets lost.
So, the word is only kept alive, if it is w1p1p2w

′
2 with w2 = Bw′

2. This word
cannot leave the first node, so we continue with w1p1p2w

′
2 in the first node to

the next evolution step.

In both subcases, the only word that can be obtained in the first node after two
evolution steps and two communication steps starting from the word w = w1Aw2

is w1p1p2w
′
2. We continue with an evolution step. Applying a rule of R1, R2, R3 or

R5 leads to a word which leaves the first node and disappears. Rules of R6 and R7

are not applicable. By the only successful rule p1 → p3 ∈ R4, we obtain the word
w1p3p2w

′
2 which is kept in the first node. The next evolution step uses the rule

p2 → p4 ∈R5 because the rules of R1, R2, R3 and R6 lead to loosing the word and
R4 and R7 are not applicable. This yields the word w1p3p4w

′
2 which is also kept

in the first node. In the next evolution step, the rules of R1, R2, R3 and R7 make
the word disappear and R4 and R5 are not possible. Hence, the only next word is
w1Cp4w

′
2 after applying the rule p3 → C ∈ R6. It remains in the first node. Now

the rules of R4, R5 and R6 are not applicable; by rules of R1, R2 and R3 the word
will be lost. The only possible rule p4 →D ∈R7 yields the word w1CDw′

2 which
is not sent out in the next communication step.

Hence, in this case, the derivation w1Aw2 =⇒w1CDw′
2 (which in G is obtained

by the initially chosen rule p) is simulated.
Other rules are not applicable to the word w.

By the case distinction above, we have shown that every word z ∈ L(N )∩(N ∪T )∗

that is derived by the network N from a word w ∈ L(N )∩ (N ∪T )∗ is also derived by
the grammar G from the word w and, hence, belongs to the set F (G).

From the inclusion L(N )∩ (N ∪T )∗ ⊆ F (G), the required inclusion L(N )∩T ∗ ⊆
L(G) follows. Together with the first part of the proof, we have L(G)=L(N )∩T ∗=L.

Corollary 2. For any context-sensitive language L, there is a network N of evolution-
ary processors with three nodes which are insertion nodes and substitution nodes such
that L = L(N ).



On the Power of Networks of Evolutionary Processors 165

Proof. Let L be a context-sensitive language. Then we construct as in the proof of
Lemma 4 a networkN = (V,N1,N2,E,1) with one insertion node and one substitution
node such that L = L(N )∩T ∗ and from N the network

N ′ = (V,N1,N2,N3,E ∪{(1,3)},3) with N3 = (∅,∅,T ∗,∅).

It is obvious from the proof of Lemma 4 that N3 collects exactly the words from the set
L(N )∩T ∗. Thus L(N ′) = L.

By Lemma 3 and Corollary 2 we get immediately the following statement.

Corollary 3. The family of languages which can be generated by networks of evolu-
tionary processors which have only insertion and substitution nodes coincides with the
class L(CS).

5 Networks with Only Deletion and Insertion Nodes

In this section we discuss networks which have only insertion and deletion nodes. In the
paper [13], the authors have also studied systems where only insertion and deletion are
allowed. However, in contrast to our definition it is possible to delete and insert words
of arbitrary length (the authors show that words of length at most three are sufficient);
we can delete and insert only letters. On the other hand, we can use filters which is not
possible in [13]. We shall prove that networks with deletion and insertion nodes can
generate any recursively enumerable language. This means that partition of the rules
to nodes and the use of regular filters has the same power as deletion and insertion of
words of arbitrary length.

Lemma 5. For any recursively enumerable language L, there are a set T and a net-
work N of evolutionary processors with exactly two insertion nodes and exactly one
deletion node such that L = L(N )∩T ∗.

Proof. Let L be a recursively enumerable language and G = (N,T,P,S) be a grammar
in Kuroda normal form with L(G) = L. In the sequel, A, B, C, D, X , Y , Z designate
non-terminals, x a terminal, p, r rules of P ; q /∈N ∪T is a new symbol, and p1, p2, p3,
p4, p5 are new symbols for every rule p ∈ P (and only those rules). We define now sets
that will be used for defining the filters (to make them more readable). Let

αp1q = {p1q | ∃A : p = A → λ} ,

αp1x = {p1x | ∃A : p = A → x} ,

αp1CD = {p1CD | ∃A : p = A → CD or ∃A,B : p = AB → CD } ,

β1 = αp1q ∪αp1x ∪αp1CD,

αAp5 = {Ap5 | p = A → λ} ,

αAp4 = {Ap4 | ∃x : p = A → x or ∃C,D : p = A → CD } ,

αABp4 =
{

AqnBp4 | n ≥ 0 and ∃C,D : p = AB → CD
}

,

β2 = αAp5 ∪αAp4 ∪αABp4 ,



166 J. Dassow and B. Truthe

αAqp5 = {Aqp5 | p = A → λ} ,

αAp2p4 = {Ap2p4 | ∃x : p = A → x or ∃C,D : p = A → CD } ,

αABp2p4 =
{

AqnBp2p4 | n ≥ 0 and ∃C,D : p = AB → CD
}

,

β3 = αAqp5 ∪αAp2p4 ∪αABp2p4 ,

αAq = {Aq | A → λ ∈ P } ,

αAp2 = {Ap2 | ∃x : p = A → x or ∃C,D : p = A → CD } ,

αABp2 =
{

AqnBp2 | n ≥ 0 and ∃C,D : p = AB → CD
}

,

αAp2p3 = {Ap2p3 | ∃C,D : p = A → CD } ,

β4 = αAq ∪αAp2 ∪αABp2 ,

β′
4 = β4 ∪αAp2p3

αp1Aq = {p1Aq | p = A → λ} ,

αp1Ap2 = {p1Ap2 | ∃x : p = A → x} ,

αp1ABp2 =
{

p1AqnBp2 | n ≥ 0 and ∃C,D : p = AB → CD
}

,

αp1Ap2p3 = {p1Ap2p3 | ∃C,D : p = A → CD } ,

β5 = αp1Aq ∪αp1Ap2 ∪αp1ABp2 ∪αp1Ap2p3 ,

αp1xp2 = {p1xp2 | ∃A : p = A → x} ,

αp1CBp2 =
{

p1CqnBp2 | n ≥ 0 and ∃A,D : p = AB → CD
}

,

αp1Cp2p3 = {p1Cp2p3 | ∃A,D : p = A → CD } ,

αp1CDp2 = {p1CDqnp2 | n ≥ 0 and ∃A,B : p = AB → CD

or n = 0 and ∃A : p = A → CD },

β6 = αp1xp2 ∪αp1CBp2 ∪αp1Cp2p3 ∪αp1CDp2 ,

αAp1qBr4 = {Aqnp1qq
mBr4 | n,m ≥ 0 and ∃X : p = X → λ

and ∃C,D : r = AB → CD },

αp1Cr4D = {p1Cr4D | (∃A : p = A → CD or ∃A,B : p = AB → CD)

and (∃x : r = C → x or ∃X,Y : r = C → XY )},

αZp1Cr4D = {Zqnp1Cr4D | n ≥ 0 and (∃A : p = A → CD or ∃A,B : p = AB → CD)

and ∃X,Y : r = ZC → XY },

αp1CDr4 = {p1CDr4 | (∃p = A → CD or ∃A,B : p = AB → CD) and

(∃x : r = D → x or ∃X,Y : (r = D → XY or r = CD → XY ))},

αp1CDXr4 = {p1CDqnXr4 | n ≥ 0 and (∃A : p = A → CD or ∃A,B : p = AB → CD)

and ∃X,Y : r = DX → Y Z },

αp1Cr5D = {p1Cr5D | (∃A : p = A → CD or ∃A,B : p = AB → CD)

and r = C → λ },

αp1CDr5 = {p1CDr5 | (∃A : p = A → CD or ∃A,B : p = AB → CD) and r = D → λ} ,

β7=αAp1qBr4 ∪αp1Cr4D∪αZp1Cr4D∪αp1CDr4 ∪αp1CDXr4 ∪αp1Cr5D∪αp1CDr5 ,



On the Power of Networks of Evolutionary Processors 167

αp1p2 = {p1p2 | ∃A,x : p = A → x} ,

αp1Bp2 =
{

p1q
nBp2 | n ≥ 0 and ∃A,C,D : p = AB → CD

}
,

αp1Cp2 = {p1Cqnp2 | n ≥ 0 and ∃A,B,D : p = AB → CD

or n = 0 and ∃A,D : p = A → CD },

αp1p2p3 = {p1p2p3 | ∃A,C,D : p = A → CD } ,

β8 = αp1p2 ∪αp1Bp2 ∪αp1Cp2 ∪αp1p2p3 ,

Tq = (T ∪{q})∗,

W = (N ∪T ∪{q})∗.

Now, we construct a network of evolutionary processors

N = (V,(M1,{S } ,I1,O1),(M2,∅,I2,O2),(M3,∅,I3,O3),
{(1,2),(2,1),(2,3),(3,2)} ,1)

with

V = N ∪T ∪{q}∪
⋃

p=A→λ∈P

{p1,p5 }∪
⋃

p=A→x∈P

{p1,p2,p4 }

∪
⋃

p=A→CD∈P

{p1,p2,p3,p4 }∪
⋃

p=AB→CD∈P

{p1,p2,p4 } ,

M1 = {λ→ q}∪{λ→ pi | 1≤ i≤ 5 and pi ∈ V } ,

M2 = {A→ λ | A ∈N }∪{pi → λ | 1≤ i≤ 5 and pi ∈ V }∪{q → λ} ,

M3 = {λ→ A | A ∈N }∪{λ→ x | x ∈ T } ,

O1 = V ∗ \ (Wβ′
4W ),

O2 = V ∗ \ (Tq {p1 | p ∈ P and p1 ∈ V }Tq),
O3 = V ∗,

I1 = W (β1∪β2∪β4)W ∪T ∗,

I2 = W (β3∪β5∪β6∪β7)W ∪Wβ1Wβ2W ∪Wβ2Wβ1W,

I3 = Wβ8W.

By reasons of space we omit the proof that L(N ) = L and refer to [10].

Corollary 4. There is a networkN of evolutionary processors with two insertion nodes
and one deletion node such that L(N ) is a non-recursive language.

Proof. Since the family of recursive languages is closed under intersection with sets T ∗,
where T is an alphabet, the network constructed in the proof of Lemma 5 for a non-
recursive language L generates a non-recursive language.

Corollary 5. For any recursively enumerable language L there is a networkN of evo-
lutionary processors with four nodes which are insertion nodes and deletion nodes such
that L = L(N ).



168 J. Dassow and B. Truthe

Proof. The proof can be given analogously to that of Corollary 2.

Obviously, any language generated by a network of evolutionary processors with only
insertion and deletion nodes is recursively enumerable since arbitrary networks of evo-
lutionary processors only generate recursively enumerable languages. Thus we get the
following statement by Lemma 5.

Corollary 6. The family of networks of evolutionary processors which have only inser-
tion and deletion nodes coincides with the family of recursively enumerable languages.

6 Conclusion

In the paper we have determined the power of networks of evolutionary processors if
only two different types of nodes are used in the network. We have shown that

– up to an intersection with a monoid every recursively enumerable language can be
generated by a network with one deletion and two insertion nodes,

– networks with an arbitrary number of deletion and substitution nodes only produce
finite languages, and for each finite language one deletion node or one substitution
node is sufficient, and

– networks with an arbitrary number of insertion and substitution nodes only gen-
erate context-sensitive languages, and (up to an intersection with a monoid) every
context-sensitive language can be generated by a network with one substitution
node and one insertion node.

The latter two results are optimal with respect to the minimal number of necessary
nodes, whereas it is an open problem whether or not one deletion and one insertion node
are sufficient to generate all recursively enumerable languages. In [1] it was shown that
networks without substitution nodes are still powerful and can generate non-recursive
languages.

If one considers networks with all three types of nodes, it is known that it is not
necessary to allow all graphs. One can obtain all recursively enumerable languages if
one restricts to special graphs e. g. to those which are known as useful structures in
technology as grids or rings (see [8], [6]). Obviously, the restriction to complete graphs
does not restrict the power in the case of networks with nodes of two types, either, be-
cause the graph given in the proof of Lemma 4 is complete and we can extend the net-
work of Lemma 5 to a language equivalent network with a complete underlying graph
(adding the edge (1,3) enforces the output filter of the first processor to be changed
to O1 = V ∗ \ (W (β′

4 ∪β8)W ); for adding the edge (3,1), no changes are necessary).
These graphs can be extended further to complete graphs according to those given in
the proofs of the Corollaries 2 and 4. Due to the input and output filters of the new
nodes, the new edges have no influence to the language generated.

Moreover, the graphs in the proofs of the Corollaries 2 and 4 are stars (if we ignore
the directions) which proves that the restriction to stars does not decrease the power.
The same situation holds with respect to backbones. A general investigation of special
graphs remains as a task.



On the Power of Networks of Evolutionary Processors 169

Analogously, one also gets all recursively enumerable languages from networks with
all three types of nodes, if one restricts the form of the regular sets e. g. to random
context sets, where one requires the presence and/or absence of some letters in the
word (see [6]). The languages we used in our proofs are more complicated since they
require absence and/or presence of some subwords. We leave as an open problem the
power of networks with two types of nodes and random context regular sets.

References

1. Alhazov, A., Martı́n-Vide, C., Rogozhin, Y.: Networks of Evolutionary Processors with Two
Nodes Are Unpredictable. In: Pre-proceedings LATA 2007, University of Tarragona, Spain.
Reports of the Research Group on Math. Linguistics 35/07 (2007)

2. Alhazov, A., Martı́n-Vide, C., Rogozhin, Y.: On the number of nodes in universal networks
of evolutionary processors. Acta Inf. 43, 331–339 (2006)

3. Castellanos, J., Leupold, P., Mitrana, V.: On the size complexity of hybrid networks of evo-
lutionary processors. Theor. Comput. Sci. 330, 205–220 (2005)

4. Castellanos, J., Martı́n-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems
with networks of evolutionary processors. In: Mira, J.M., Prieto, A.G. (eds.) IWANN 2001.
LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)

5. Castellanos, J., Martı́n-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary proces-
sors. Acta Informatica 38, 517–529 (2003)

6. Csuhaj-Varjú, E., Martı́n-Vide, C., Mitrana, V.: Hybrid networks of evolutionary processors
are computationally complete. Acta Informatica 41, 257–272 (2005)

7. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salo-
maa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer,
Heidelberg (1997)

8. Dassow, J.: On special networks of parallel language processors. Romanian Journal of Infor-
mation Science and Technology 1, 331–341 (1998)

9. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin
(1989)

10. Dassow, J., Truthe, B.: On the Power of Networks of Evolutionary Processors. Otto-von-
Guericke-Universität Magdeburg, Fakultät für Informatik, Technical report (2007)

11. Fahlmann, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for AI:
NETL, THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI, pp. 109–
113. William Kaufman, Los Altos (1983)

12. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)
13. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems.

Theor. Comput. Sci. 330, 339–348 (2005)
14. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Berlin (1997)



Study of Limits of Solvability in Tag Systems

Liesbeth De Mol

Center for Logic and Philosophy of Science
University of Ghent, Blandijnberg 2, 9000 Gent, Belgium

elizabeth.demol@ugent.be

Abstract. In this paper we will give an outline of the proof of the solv-
ability of the halting and reachability problem for 2-symbolic tag systems
with a deletion number v = 2. This result will be situated in a more gen-
eral context of research on limits of solvability in tag systems.

Keywords: Tag Systems, Limits of solvability, Reachability problem,
Halting Problem.

1 Introduction

Tag systems were invented by Emil Post in 1921 [15],[16] and played an important
role in Post’s earlier work on normal systems. After 9 months of research on tag
systems, he came to the conclusion that proving the Entscheidungsproblem for
first-order predicate calculus solvable might be impossible. He never proved the
unsolvability of this Entscheidungsproblem, but was able to show that there are
certain unsolvable decision problems for normal systems [4],[5], [10], [18].

Although Post mentions some results on tag systems [15], [16] he never pub-
lished any of the proofs. He considered two different decision problems for tag
systems: the halting problem and the reachability problem.

Definition 1. The halting problem for tag systems is the problem to determine
for a given tag system and any initial string A0 whether the tag system will halt.

Definition 2. The reachability problem for tag systems is the problem to deter-
mine for a given tag system T, a fixed initial string A0 and any arbitrary string
A over the alphabet Σ, whether T will ever produce A when started with A0.

Note that the halting problem for tag systems is in fact just a special case of the
reachability problem. Post mentioned that he was able to prove the solvability of
both decision problems for a specific class of tag systems, a result he considered
as the major success of his research on tag systems. The main purpose of this
paper is to give an outline of a proof of this result.

1.1 Definition of Tag Systems and Notational Conventions

A tag system T, consists of a finite alphabet Σ = {a0, a1, ..., aμ−1} of μ symbols,
a deletion number v ∈ N and a finite set of μ words, w0, w1, ..., wμ−1 defined

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 170–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Study of Limits of Solvability in Tag Systems 171

over the alphabet, including the empty word ε. Each of these words corresponds
with one of the letters from the alphabet as follows:

a0 → a0,1a0,2...a0,n0

a1 → a1,1a1,2...a1,n1

... ... ...
aμ−1 → aμ−1,1aμ−1,2...aμ−1,nμ−1

where each ai,j ∈ Σ, 0 ≤ i < μ. Given an initial string A0, the tag system first
tags the word associated with the leftmost letter of A0 at the end of A0, and then
deletes the first v symbols of A0.1 This process is iterated until the tag system
halts, i.e. produces the empty string ε. If this does not happen the tag system
can become periodic or show divergent behaviour. Post mentions one example
of a tag system with v = 3, 0 → 00, 1 → 1101 [15]. It is still not known whether
this particular tag system is recursively solvable, despite its formal simplicity.

Let T be a tag system with a deletion number v with μ symbols and words
w0, w1, ..., wμ−1. We shall write lwi to indicate the length of a word wi, lmax and
lmin denote the length of the lengthiest word wi rsp. the length of the shortest
word wj of T , 0 ≤ i, j < μ. The total sum of the number of ai’s in the words
w0, ...wμ−1 will be denoted as #ai. We will use ẋ rsp. x to indicate an odd rsp.
an even number. Given a string A = a1a2...alA , we will say that A is entered
with shift x, when the tag system erases its first x symbols, the first symbol
scanned in A being ax+1.

1.2 Results on the Limits of Solvability in Tag Systems

Post never proved that tag systems are recursively unsolvable. It was Minsky
who proved the result in 1961 [8], after the problem was suggested to him by
Martin Davis. He showed that any Turing machine can be reduced to a tag
system with v = 6. The result was improved by Cocke and Minsky [2], [9]. They
proved that any Turing machine can be reduced to a tag system with v = 2.
The same result was proven by Wang [19]. Maslov generalized this result and
proved that for any v > 1 there exists at least one tag system with an unsolvable
decision problem and, independent of Wang, furthermore proved that any tag
system for which v = 1 is solvable [7].

The result from [2], [9] can be used to determine the size of the smallest
universal tag system known. If we define the size of a tag system T as the product
of μ and v, it is possible to reduce any 2-symbolic Turing machine with m states
to a tag system with v = 2, μ = 16m. Using the universal Turing machine
constructed by Neary in the class TM(18, 2) [14] or the machine constructed
by Baiocchi which is in the class TM(19,2) [1], where TM(m, n) denotes the
1 It should be noted that we follow Post’s original definition of tag systems, instead of

the one that is now commonly used. I.e. in the definition used here, the tagging and
deletion operation are not performed in one and the same step. The proof of the main
theorem only needs some minor changes in order to be applicable to a definition of
tag systems where tagging and deletion operation are performed synchronously.



172 L. De Mol

class of Turing machines with m states and n symbols, it is possible to construct
universal tag systems in the classes TS(288, 2) rsp. TS(304,2), TS(m, v) denoting
the class of tag systems with m symbols and a deletion number v.

Despite the relatively large size of the smallest universal tag systems known,
there are some clear indications that proving very small classes of tag systems
solvable will be very hard, if not impossible. The fact that the tag system men-
tioned above from the class TS(2, 3) is still not known to be solvable serves as an
indication of this problem. A further indication is given by the result from [12],
where it is shown that the 3n + 1-problem can be reduced to a tag system from
the class TS(3, 2), i.e., w0 → w1w2, w1 → w0, w2 → w0w0w0. The reduction of
the 3n + 1-problem, which is known as a hard problem of number theory, to a
very small tag system, illustrates how hard it might be to prove this class of tag
systems solvable.

Post mentions that the halting and reachability problem for the class of tag
systems for which v = 1 or μ = 1 is trivially solvable and remarks that he
completely solved the case μ = v = 2 [16]. But, as was said, the proofs were
never published. The case μ = 1 is indeed trivially solvable. Wang [19] provided
the proof for the case v = 1. In this paper we will outline the proof for the class
μ = v = 2.

Both μ and v can be regarded as decidability criteria [6] for tag systems, since
their solvability depends on the size of these parameters. Another such criterion
is the length of the words. Wang proved that any tag system for which lmin ≥ v
or lmax ≤ v is solvable [19].

2 Solvability of the Halting and Reachability Problem of
the Class TS(2,2)

In [16] Post remarks that his proof of the solvability of the halting and reacha-
bility problem of the class TS(2, 2) involved “considerable labor”. This is indeed
true, as will become clear from the outline of the proof we will give here. The
proof involves a study of a rather large number of subcases. We will merely out-
line the structure of the proof and restrict ourselves to detailed proofs for only
some of the subcases, because of the length of the actual proof, and the fact
that several subcases can be solved by using similar methods. A detailed proof
is made available on-line [11].

Post differentiates between three different classes of behaviour a tag system
can converge to, i.e., a tag system can halt, it can become periodic, or it can
show unbounded growth. The reachability and halting problem can be proven
solvable, if one can determine for any initial condition, for a given tag system,
that it will lead to one of these three classes of behaviour after a finite number
of steps. In case of unbounded growth, one should be able to prove that for any
given number n, the tag system will always produce a string Ai of length lAi > n
after a finite number of iterations i, such that no string Aj , j > i, will ever be
produced again for which lAj ≤ n.



Study of Limits of Solvability in Tag Systems 173

In our proof, we have indeed been able to show that one can determine for any
tag system T from the class TS(2, 2) and any initial condition over the alphabet
Σ = {0, 1}, that T will always become periodic, halt or show unbounded growth
after a finite number of steps. We have thus been able to prove the following
theorem:

Theorem 1. For any given tag system T , if μ = v = 2 then the halting problem
and the reachability problem for T are solvable.

First of all, it should be noted that we only have to consider those cases with
lmin < 2, lmax > 2, given the theorem proven by Wang mentioned in Sec. 1.2.
In the remainder, we assume that lmax = lw1 , lmin = lw0 , the symmetrical case
of course being equivalent to this case.

There are three global cases to be taken into account, i.e., w0 = ε, w0 = 1,
w0 = 0. Each of these cases is subdivided into several subcases, determined by the
following parameters: lw1 , the parity of lw1 ,

2 #1, and the parity of the number of
0’s separating consecutive 1’s in w1. It should be noted that, contrary to classes of
Turing machines TM(m, n), the three global cases to be taken into account contain
an infinite number of tag systems. In this sense it has been basic for the proof to
determine certain threshold values for two of these parameters, i.e., lw1 and #1. If
the values of these parameters exceed a given value, the infinite class of tag systems
determined by the parameters will always show unbounded growth (except for a
specific class of initial strings), else they will halt or become periodic (except for
a specific class of initial strings).

There is one method that has been basic to solve the majority of cases, called
the table method. What one basically does with this method is to look at a
certain number of substrings that can be produced theoretically in a given tag
system, by starting from the possible productions from the respective words
w0, ..., wμ−1. Given a tag system T with a deletion number v, it is clear that
given a word wi = ai,1ai,2...ai,lwi

, some letters in wi will be ‘scanned’, others
not. The sequence of letters that is scanned is determined by the number n,
0 ≤ n ≤ v − 1, of leading letters of wi that is erased but not scanned by
the tag system and which leads to the concatenation or tagging of the words
corresponding to the letters from the sequence at the tail of a given string. For
example, if v = 3, there are three different sequences of letters in wi that might
be scanned by the tag system: ai,1ai,4...ai,t0 , ai,2ai,5...ai,t1 , ai,3ai,6...ai,t2 , with:

tj = lwi − [(lwi − j) mod 3]

Now, given a tag system T, with deletion number v and μ letters. The table
method is applied to the tag system by first looking at all the possible strings v
that can be produced from each of the words wi, 0 ≤ i < μ, by concatenating
the words corresponding to the letters of each of the different sequences in each
of the wi, determined as above. If one of these new strings is equal to one of
the words wi it is marked. If all the strings produced in this way are marked
or equal to ε it follows that the tag system will always halt or become periodic,
2 The parity of a number x is the property of it being even or odd.



174 L. De Mol

since the length of the strings that can be produced from the respective words is
bounded. If this is not the case, the same procedure is applied to all the strings
left unmarked and not equal to ε,...If we e.g. apply this method to the two words
00 and 1101 of the tag system mentioned above (Sec. 1.1), only one (11011101)
of the 6 possible strings produced will be left unmarked, and differs from ε. If we
apply the method to this one string it becomes clear very soon that the method
will never come to a halt, i.e., there will always remain strings left unmarked.

As will become clear in the proof, the table method is not only useful if, for
a given tag system, all the strings become marked or are equal to ε at a given
time, but can also be used to e.g. prove that a tag system will either halt or
show unbounded growth. In general, it should be noted here that, although this
method is very simple, it is an important instrument to study tag systems.

The method is called the table method, because the results from the method
can best be represented through tables. We will explain how such a table should
be read, in the first application of the method in the proof.

Note that from now on, lw0 and lw1 will be abbreviated as l0 rsp. l1.

Proof.

Case 1. w0 = ε

Case 1.1. #1 = 0. It is trivial to prove that tag systems from this class will
always halt, since only 0’s can be scanned.

Case 1.2. #1 = 1, l1 ≡ 0 mod 2. Let w1 = 0ẋ110y1. To prove this case, we
need the table method mentioned above. The following table proves the case:

w0 w1

S0 ε ε
S1 ε w1�

The row headed with S0 gives the string produced from a given string S (in this
case w0 or w1) when the first letter of the string S is scanned by the tag system.
Similarly, the row headed S1 gives the possible productions from a given string
S when its first letter is erased without being scanned. Clearly, since in this case
w0 = ε actually no letter in w0 can be scanned or erased. The only possible
non-empty string that can be produced for this case, is the string resulting from
w1 when entered with a shift 1, i.e., its first letter is erased but not scanned.

As is clear from the table, a tag system from this class will either halt or
become periodic. It will become periodic when at least one 1 is scanned in the
initial condition, such that the first letter from the word w1 thus produced, will
not be scanned. This is determined by the parity of the length of the initial
condition. In all other cases, tag systems from this class halt. A similar proof
can be given for the case w1 = 0x110ẏ1.



Study of Limits of Solvability in Tag Systems 175

Case 1.3. #1 = 1, l1 ≡ 1 mod 2. The table that can be constructed for this
class of tag systems, is identical to that of the previous case, with w1 = 0ẋ110ẏ1 .
Despite the table being identical, tag systems from this class can be proven to
always halt. The reason for this is that the number of surviving 1’s is at most
half of what it was when the tag system has scanned (and erased) all the letters
of the current word at a given stage of the computation. The reader is referred
to the on-line details of the proof.

Case 1.4. #1 = 2, l1 ≡ 0 mod 2. To prove the case we have to differentiate
between two subcases, i.e. w1 = 0x110y110z1 and w1 = 0ẋ110ẏ110z1 (the proof
for w1 = 0ẋ110y110ż1 is similar to the first case, the proof of w1 = 0x110ẏ110ż1

is similar to the second case).

Case 1.4.1. w1 = 0x110y110z1 . The first case is proven through the following
table:

Table 2. w1 = 0x110y110z1

w1

S0 w1�
S1 w1�

From this table it follows that any tag system from this class will always become
periodic, except when no 1 is scanned in the initial condition, then it always
halts.

Case 1.4.2. w1 = 0ẋ110ẏ110z1 . The case is proven through the following table:

Table 3. w1 = 0ẋ110ẏ110z1

w1 w1w1 ... (w1w1)n

S0 ε ε ... ε
S1 w1w1 w1w1w1w1 .... (w1w1)2n

As is clear from the table, tag systems from this class will either halt or show
unbounded growth depending on the parity of the length of the initial condition.

Case 1.5. #1 = 2, l1 ≡ 1 mod 2. The proof is almost identical to that of case
1.4., except that now we have to consider the cases w1 = 0x110ẏ110z1 (or similarly
w1 = 0ẋ110ẏ110ż1) and w1 = 0ẋ110y110z1 (or similarly w1 = 0x110y110ż1).

Case 1.6. #1 = 3, l1 ≡ 0 mod 2. Again we have to consider several cases,
depending on the parity of the number of 0’s separating pairs of symbols 1 in
w1. The proofs of the several cases are similar to those for Case 1.4. Tag systems
from this class will always show unbounded growth, halt or become periodic,
depending on the parity of the initial condition and the spacings between the
several 1’s.



176 L. De Mol

Case 1.7. #1 = 3, l1 ≡ 1 mod 2. We have to differentiate between two
cases: w1 = 0s110x110y110t1 (and all variants) or w1 = 0s110ẋ110ẏ110t1 (and all
variants). It can be proven that tag systems from both classes will either halt
(if no 1 is scanned in the string produced from the initial condition) or show
unbounded growth after a finite number of steps, by applying the table method.
See [11] for the detailed table.

Case 1.8. #1 > 3, l1 ≡ 0 mod 2 and Case 1.9. #1 > 3, l1 ≡ 1 mod
2. For any tag system from these classes and any initial condition it can be
determined that it will either halt, become periodic, or show unbounded growth
after a finite number of iterations. The result follows from the proofs of cases
1.4.–1.7.

Case 2. w0 = 1

Case 2.1. #1 = 1 In this case the length of w1 is a determining factor to
predict the behaviour of a tag system from this class, since w1 only consists of
0’s. We have to differentiate between the following two cases: 2 < l1 < 5 or
5 ≤ l1.

Case 2.1.1. 2 < l1 < 5 Tag systems from this class will always become periodic,
except when the initial condition is equal to 0, then it will halt. The result can be
proven through the table method, the details of the proof can be found on-line.

Case 2.1.2. 5 ≤ l1 It can be easily checked that tag systems from this class will
always show unbounded growth, except for a finite class of initial conditions, for
which the tag systems will halt or become periodic after a finite number of steps.
The proof follows from the fact that once a tag system from this class produces
a string that consists of at least two times w1 it will show unbounded growth.
The proof follows from the table method (see the on-line proof).

Case 2.2. #1 = 2, l1 = 3. It can be determined for any tag system from
this class that it will either halt or become periodic. There are three different
tag systems to be taken into account: 0 → 1; 1 → 100, 0 → 1; 1 → 010, and
0 → 1; 1 → 001. The result can be proven for each of the cases by applying the
table method. (see [11] for detailed tables.)

Case 2.3. #1 = 2, l1 > 3. It can be determined for any tag system from this
class that it will either halt, become periodic or show unbounded growth. To
prove the result, we have to differentiate between l1 = 4 and l1 > 4

Case 2.3.1. l1 = 4 The result of the case follows from a rather complicated
application of the table method. The table is about half a page long and needs
some further deductions. The details of the proof can be found on-line.

Case 2.3.2. l1 > 4 For the second case it can be shown rather easily that once
w1w1 is produced as a substring, tag systems from this class will always lead to
unbounded growth. For more details the reader is referred to the on-line proof.



Study of Limits of Solvability in Tag Systems 177

Case 2.4. #1 > 2. Each tag system from this class will either halt, become
periodic, or show unbounded growth. The proof differentiates between two sub-
cases l1 = 3 and l1 > 4. The first case involves a more complicated application
of the table method. The proof of the second case is rather straightforward and
follows from case 2.3.2. See the on-line proof for more details.

Case 3. w0 = 0

Case 3.1. #1 = 0, l1 > 2. It is trivial to prove that any tag system from this
class will halt, since any sequence of 0’s always leads to ε.

Case 3.2. #1 = 1, l1 > 2. It can be determined that any tag system from
this class will either halt or become periodic by applying the table method (see
the on-line proof).

Case 3.3. #1 = 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for any tag
system from this class that it will either halt, become periodic or show unbounded
growth after a finite number of iterations. From now on, we will write x instead
of 0x for the ease of notation. We have to take into account two cases. The 1’s
can be separated by an even or an odd number of 0’s, i.e., w1 = t11x11s1 (or
similarly w1 = ṫ11x11ṡ1), or w1 = t11ẋ11ṡ1 (or, similarly w1 = t11ẋ11ṡ1).

Case 3.3.1. w1 = t11x11s1 The proof of the first case results from the application
of the table method. It proves that any tag system from this class will always
become periodic after a finite number of steps for any initial condition except for
those conditions in which no 1 is scanned by the tag system, then a halt occurs.

Case 3.3.2. w1 = t11ẋ11ṡ1 It can be shown that any tag system from this class
will either halt, become periodic or show unbounded growth after a finite num-
ber of iterations. The proof of this case is more complicated, and we have to
subdivide the case into two subcases: t1, ẋ1 or ṡ1 > 1 and t1 = 0, ẋ1 = 1, ṡ1 = 1.

Case 3.3.2.1. t1, ẋ1 or ṡ1 > 1 For any tag system from this class it can be
determined that it will either halt, become periodic or show unbounded growth.
Set w1 = t11ẋ11ṡ1. In shift 1, the tag system will produce a sequence of 0’s from
w1, ultimately leading to a halt. In shift 0, we get:

A1 = t2w1 �ẋ1/2�w1s2 (1)

Depending on the shift, if ṡ1 + �ẋ1/2�+ t1 is even, we get:

t3A10n1 (2)

or:
t30n1A1 (3)

from (1). It thus follows that if ṡ1 + �ẋ1/2� + t1 is even, and at least one w1

is produced such that its first 1 will be scanned, the tag system will ultimately



178 L. De Mol

become periodic, since the lengths of the possible strings produced from w1 in
this case are bounded, but never produce the empty string. If ẋ1 + �ẋ1/2�+ t1
is odd, the tag system produces:

A2 = t4A1 �ẋ1/4�A1s3 (4)

from (1), or a string merely consisting of a certain number of 0’s (ultimately
converging to ε), depending on the shift. If ṡ1 + s2 + �ẋ1/4�+ t2 + t1 is even, we
get:

t5A20n2 (5)

or:
t50n2A2 (6)

from A2, again depending on the shift. Thus if ṡ1 + s2 + �ẋ1/2�+ t2 + t1 is even,
the tag system will always halt or become periodic. A halt occurs, if no A2 is
produced. If ṡ1 + s2 + (ẋ1 − 1)/4 is odd, the tag system produces:

A3 = t6A2�(ẋ1)/8�A2s4 (7)

from (4), or a sequence of 0’s depending on the shift.
Generally, tag systems from this class will become periodic or halt once a

sequence ṡ1 + s2 + s3 + ... + sn + �(ẋ1)/2n� + tn + ... + t2 + t1, separating two
consecutive An−1 in An (n ∈ N, A0 = w1) becomes even. Indeed, given a string
An = tiAn−1 �ẋ1/2n�An−1ṡi, with ṡ1+s2+s3+...+sn+�ẋ1/2n�+tn+...+t2+t1
even, the tag system will produce either tiAn0nj or ti0nj An, with the number
of 0’s surrounding each An being bounded. If for a given tag system, there is no
n such that the sequence ṡ1 + s2 + s3 + ... + sn + �(x1/2n� + tn + ... + t2 + t1
between a pair of An−1 in An is even, the tag system will either halt or show
unbounded growth.

Now, it can be easily determined (in a finite number of steps) for any tag
system from this class whether there exists an n such that ṡ1 + s2 + s3 + ... +
sn + �(x1− 1)/2n�+ tn + ... + t2 + t1 between a pair of An−1 in An is even. This
follows from the following lemma:3

Lemma 1. For any tag system from the class 3.3.2.1. it can be proven that there
is always an n, n ∈ N such that for any i ≥ n the sequence of 0’s ṡ1 + s2 + s3 +
... + si + �(x1 − 1)/2i�+ ti + ... + t2 + t1 between a pair of Ai−1 in Ai is of the
same length as ṡ1 + s2 + s3 + ... + sn + �(x1 − 1)/2n�+ tn + ... + t2 + t1.

The proof of the lemma can be found in the on-line version. It follows from this
lemma that one can determine for any tag system from this class whether a
sequence of 0’s separating two consecutive Ai−1 in Ai will ever become even or
not, since it only takes a finite number of steps before a sequence An is produced
for which the number of 0’s separating a pair of An−1 becomes constant. We have
3 We are indebted to an anonymous referee for pointing out a serious error in a previous

proof of this case concerning the number of 0’s separating a pair of An−1 and having
provided us with the necessary lemma and an outline of its proof to solve the case.



Study of Limits of Solvability in Tag Systems 179

thus proven the case: tag systems from this class will either halt, become periodic
or show unbounded growth.

Case 3.3.2.2. t1 = 0, x1 = 1, s1 = 1 It can be proven that the only tag system
in this class, with w1 = 1010, will either halt or show unbounded growth. The
result can easily be obtained through the table method or by pure reasoning.
See the on-line proof for more details.

Case 3.4. #1 = 2, l1 > 2, l1 ≡ 1 mod 2. It can be determined for any tag
system from this class that it will always halt or become periodic. Again we have
to consider two cases, depending on the parity of the spacing between the two
1’s, i.e. w1 = ṫ11x11s1s and w1 = t11ẋ11s1. The proof of the first case is similar
to the proof of case 3.3.1. For the second case, we have to differentiate between
two subcases, i.e., t1, x1 or s1 > 1 and t1 = 0, x1 = 1, s1 = 0. The proof of the
first subcase is almost identical to that of case 3.3.2.1., the second subcase easily
follows by applying the table method. See the on-line proof for more details.

Case 3.5. #1 > 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for each
tag system from this class that it will either show unbounded growth, become
periodic or halt after a finite number of iterations, depending on the initial
condition. To prove this, we merely have to consider the case #1 = 3, since the
generalization to #1 > 3 trivially follows from the proof of the case #1 = 3.
There are two possible subcases to be proven: either all 1’s are separated by an
odd number of 0’s, or only one pair of 1’s is separated by an odd number of
0’s. The proofs of both cases use methods similar to those used for Case 3.3.2.
Detailed proofs are available on-line.

Case 3.6. #1 > 2, l1 > 2, l1 ≡ 1 mod 2. For any tag system from this class
it can be determined that it will either halt, become periodic or show unbounded
growth after a finite number of iterations, depending on the initial condition. The
proofs for the several subcases are similar to those for case 3.5.

The proof of theorem 1 follows from the proofs of cases 1–3. � 

3 Discussion

As is clear from the outline of the main theorem of this paper, proving the
solvability of the halting and reachability problem for the class TS(2, 2) indeed
involves considerable labor. Most probably the proofs of some cases might be
simplified. For example,the solvability of cases 1.2, 1.4, 1.6., 1.8. follows from the
following theorem:

Theorem 2. Given a tag system T with deletion number v, Σ = {a0, a1, ...,
aμ−1} and words wa0 , wa1 , ..., waμ−1 . Then, if the lengths l of the words and v
are not relative prime the solvability of a given decision problem for T can be
reduced to the solvability of the decision problem for n different tag systems,
λ being the greatest common divisor of v, lwa0

, ..., lwaμ−1
, with deletion number

v′ = v/λ.



180 L. De Mol

which is proven in [13]. It follows from this theorem that the halting and reacha-
bility problem for all the tag systems with w0 = ε, lw1 ≡ 0 mod 2 from the class
TS(2, 2) can be reduced to the halting and reachability problem of tag systems
with v = 1. Since Wang proved that these problems are solvable for any tag
system with v = 1 (See Sec. 1.2), the result easily follows.

As was explained in Sec. 1.2, it might be very hard, if not impossible, to
prove the solvability of those classes of tag systems that are closest to
TS(2, 2), i.e., TS(2,3) and TS(3,2). In fact, as far as our experience goes with
these classes of tag systems, they seem to be completely intractable. The meth-
ods used in the present proof do not work for these classes. The only reasonable
explanation we have been capable to find for this basic difference is related to the
balance between the total number #a0, #a1, ..., #aμ−1 of each of the symbols
a0, a1, ..., aμ−1 in the respective words for a given tag system. For each symbol
ai, we can measure the effect of scanning ai on the length of a string produced
in a tag system, i.e., it can lead to a decrease or an increase. This effect of scan-
ning a symbol ai on the length of a string produced, can be computed by taking
the absolute value of lwai

− v. If we then sum up the products #ai · (lwai
− v)

for each of the symbols, and the result is a negative rsp. a positive number,
one might expect that the tag system will always halt rsp. show unbounded
growth.

Although we have been able to show that this method cannot be used in
general, it is clear that this method might be applied to certain infinite classes
of tag systems to prove them solvable. Not taking into account the case with
w0 = ε it can be proven for the class TS(2, 2) that there is but a finite subclass of
tag systems for which this sum is equal to 0.4 This is in sharp contrast with the
classes TS(2,3) and TS(3,2) for which it can be proven that they each contain an
infinite class of such tag systems, even if no word is equal to ε. We consider this
as a fundamental difference between the class TS(2,2) and the classes TS(3,2),
TS(2,3). In fact, we suspect that further research on this method might help to
considerably simplify the proof of Theorem 1. For more details on this issue the
reader is referred to [13].

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

2. Cocke, J., Minsky, M.: Universality of tag systems with p = 2, Artificial Intelligence
Project – RLE and MIT Computation Center, memo 52 (1963)

3. Davis, M.: The undecidable. Basic papers on undecidable propositions, unsolvable
problems and computable functions. Raven Press, New York (1965) (Corrected
republication, Dover publications, New York (2004))

4. Davis, M.: Why Gödel didn’t have Church’s thesis. Information and Control 54,
3–24 (1982)

4 These are tag systems with l0 = 1, l1 = 3, #1 = #0 = 2.



Study of Limits of Solvability in Tag Systems 181

5. Davis, M.: Emil L. Post. His life and work. In: [17], pp. xi–xviii (1994)
6. Margenstern, M.: Frontier between decidability and undecidability: A survey. The-

oretical Computer Science 231(2), 217–251 (2000)
7. Maslov, S.J.: On E. L. Post’s ‘Tag’ problem (russian). Trudy Matematicheskogo

Instituta imeni V.A. Steklova 72, 5–56 (1964b) (English translation in: American
Mathematical Society Translations Series 2, 97, 1–14 (1971))

8. Minsky, M.: Recursive unsolvability of Post’s problem of tag and other topics in
the theory of Turing machines. Annals of Mathematics 74, 437–455 (1961)

9. Minsky, M.: Size and structure of universal Turing machines using tag systems: a
4-symbol 7-state machine. In: Proceedings Symposia Pure Mathematics. American
Mathematical Society, vol. 5, pp. 229–238 (1962)

10. De Mol, L.: Closing the circle: An analysis of Emil Post’s early work. The Bulletin
of Symbolic Logic 12(2), 267–289 (2006)

11. De Mol, L.: Solvability of the halting and reachability problem for tag systems
with μ = v = 2. Preprint 343, Center for Logic and Philosophy of Science (2007),
http://logica.ugent.be/centrum/writings/pubs.php

12. De Mol, L.: Tag systems and Collatz-like functions. Theoretical Computer Science
(submitted) (under revision, 2007)

13. De Mol, L.: Tracing unsolvability: A historical, mathematical and philosophical
analysis with a special focus on tag systems. Ph.D. thesis, to obtain the de-
gree of Doctor in Philosophy, University of Ghent (submitted 2007), available at:
http://logica.ugent.be/liesbeth/dissertation.pdf

14. Neary, T.: Small polynomial time universal Turing machines. In: Proceedings of
MFCSIT 2006, Cork, Ireland (2006)

15. Post, E.L.: Formal reductions of the general combinatorial decision problem. Amer-
ican Journal of Mathematics 65(2), 197–215 (1943)

16. Post, E.L.: Absolutely unsolvable problems and relatively undecidable propositions
- account of an anticipation. In: [3], pp. 340–433 (1965) (also published in [17])

17. Post, E.L.: Solvability, provability, definability: The collected works of Emil L.
Post, edited by Davis, M., Birkhauser, Boston (1994)

18. Stillwell, J.: Emil Post and his anticipation of Gödel and Turing. Mathematics
Magazine 77(1), 3–14 (2004)

19. Wang, H.: Tag systems and lag systems. Mathematische Annalen 152, 65–74
(1963a)

http://logica.ugent.be/centrum/writings/pubs.php
http://logica.ugent.be/liesbeth/dissertation.pdf


Query Completeness of Skolem Machine

Computations

John Fisher1 and Marc Bezem2

1 Department of Computer Science
California State Polytechnic University

Pomona, California, USA
jrfisher@csupomona.edu

2 Department of Computer Science
University of Bergen

Bergen, Norway
bezem@ii.uib.no

Abstract. The Skolem machine is a Turing-complete machine model
where the instructions are first-order formulas of a specific form. We
introduce Skolem machines and prove their logical completeness. Skolem
machines compute queries for the Geolog language, a rich fragment of
first-order logic. The concept of complete Geolog trees is defined, and this
tree concept is used to show logical completeness for Skolem machines: If
the query for a Geolog theory is a logical consequence of the axioms then
the corresponding Skolem machine halts succesfully in a configuration
that supports the query.

1 The Geolog Language and Skolem Machines

Geolog is a language for expressing first-order geometric logic in a format suitable
for computations using an abstract machine. Geolog rules are used as machine
instructions for an abstract machine that computes consequences for first-order
geometric logic.

A Geolog rule has the general form

A1, A2, . . . , Am ⇒ C1; C2; . . . ; Cn (1)

where the Ai are atomic expressions and each Cj is a conjunction of atomic
expressions, m, n ≥ 1. The left-hand side of a rule is called the antecedent of
the rule (a conjunction) and the right- hand side is called the consequent (a
disjunction). All atomic expressions can contain variables.

If n = 1 then there is a single consequent for the rule (1), and the rule is
said to be definite. Otherwise the rule is a splitting rule that requires a case
distinction (case of C1 or case of C2 or . . . case of Cn).

The separate cases (disjuncts) Cj must have a conjunctive form

B1, B2, . . . , Bh (2)

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 182–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Query Completeness of Skolem Machine Computations 183

where the Bi are atomic expressions, and h ≥ 1 varies with j. Any free variables
occurring in (2) other than those which occurred free in the antecedent of the
rule are taken to be existential variables and their scope is this disjunct (2).

As an example, consider the Geolog rule

s(X,Y) => e(X,Y) ; dom(Z),r(X,Z),s(Z,Y) .

The variables X,Y are universally quantified and have scope covering the entire
formula, whereas Z is existentially quantified and has scope covering the last
disjunct in the consequent of rule. A fully quantified first-order logical formula
representation of this Geolog rule would be

(∀X)(∀Y )[s(X, Y ) → e(X, Y ) ∨ (∃Z)(dom(Z) ∧ r(X, Z) ∧ s(Z, Y ))]

Now we come to two special cases of rule forms, the true antecedent and the
goal or false consequents. Rules of the form

true ⇒ C1; C2; . . . ; Cn (3)

are called factuals. Here ‘true’ is a special constant term denoting the empty
conjunction. Factuals are used to express initial information in Geolog theories.
Rules of the form

A1, A2, . . . , Am ⇒ goal (4)

are called goal rules. Here ‘goal ’ is a special constant term. A goal rule expresses
that its antecedent is sufficient (and relevant) for goal . Similarly, rules of the
form

A1, A2, . . . , Am ⇒ false (5)

are called false rules. Here ‘false ’ is a special constant term denoting the empty
disjunction. A false rule expresses rejection of its antecedent.

The constant terms true, goal and false can only appear in Geolog rules as just
described. All other predicate names, individual constants, and variable names
are the responsibility of the Geolog programmer.

A Geolog theory (or program) is a finite set of Geolog rules. A theory may
have any number of factuals and any number of goal or false rules.

The logical formulas characterized by Geolog, and the bottom-up approach
to reasoning with those logical formulas, finds its earliest precursor (1920) in a
particular paper by Thoralf Skolem [5].

Geolog theories serve as the instruction set for an abstract Skolem machine
(SM). Skolem machines resemble multitape Turing machines and the two ma-
chine models have actually the same computational power. See the discussion in
the last section.

An SM starts with one tape having true written on it. The basic operations
of an SM use the Geolog rules in the instruction set to



184 J. Fisher and M. Bezem

– extend a tape (write logical terms at the end)
– create new tapes (for splitting rules)

The tapes are also called states. An SM with more than one tape is said to
be in a disjunctive state, comprised of multiple separate simple states or tapes.

The basic purpose of a particular SM is to compute its instruction set and to
halt when all of its tapes have ‘goal ’ or ‘false ’ written on them.

In order to motivate the general definitions for the workings of SM, let us
work through a small example. To this end, consider the Geolog rulebase (SM
instructions) in Figure 1.

true => domain(X), p(X). % #1
p(X) => q(X) ; r(X) ; domain(Y), s(X,Y). % #2
domain(X) => u(X). % #3
u(X), q(X) => false. % #4
r(X) => goal. % #5
s(X,Y) => goal. % #6

Fig. 1. Sample instructions

The only instruction that applies to the initial tape is instruction #1. The an-
tecedent of the rule matches true on the tape, so the tape can be extended using
the consequent of the rule. In order to extend the tape using domain(X),p(X) an
instance for the free existential variable X is first generated and then substituted,
and the resulting terms are written on the tape, as shown in Figure 2.

--------------------------------------
true domain(sk1) p(sk1)
--------------------------------------

Fig. 2. After applying rule

At this point in machine operation time either of the rules #2 or #3 can
apply. The general definition of SM operation does not specify the order, but we
will apply applicable rules in top-down order. So, applying instruction #2 we
get tape splitting, as shown in Figure 3.

Each of the disjuncts in the consequent of rule #2 is used to extend the
previous single tape. This requires that the previous tape be copied to two new
tapes and then these tapes are extended.

Now, instruction #3 applies to all three tapes, even twice to the last tape,
with total result shown in Figure 4.

Instruction #4 now adds false to the top tape, shown in Figure 5.
Now instruction #5 applies to the second tape, and then instruction #6 ap-

plies to the third tape, shown in Figure 6.
At this point the SM halts because each tape has either the term goal or the

term false written on it.



Query Completeness of Skolem Machine Computations 185

--------------------------------------
true domain(sk1) p(sk1) q(sk1)

--------------------------------------
--------------------------------------
true domain(sk1) p(sk1) r(sk1)

--------------------------------------
-----------------------------------------------
true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2)

-----------------------------------------------

Fig. 3. After applying rule #2

--------------------------------------
true domain(sk1) p(sk1) q(sk1) u(sk1)

--------------------------------------
--------------------------------------
true domain(sk1) p(sk1) r(sk1) u(sk2)

--------------------------------------
---------------------------------------------------------------
true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2)

---------------------------------------------------------------

Fig. 4. After applying rule #3 four times (!)

The SM has effectively computed a proof that the disjunction

(∃X)(u(X) ∧ q(X)) ∨ (∃X)r(X) ∨ (∃X)(∃Y )s(X, Y )

is a logical consequence of the Geolog theory consisting of the first three rules
in Figure 1. This is so because every tape of the halted machine either has
q(sk1),u(sk1)written on it or has r(sk1) written on it or else has s(sk1,sk2)
written on it. Note that the three disjuncts correspond to the goal and false rules
in Figure 1. We will continue a discussion of this example (specifically, the role
intended for the false rule) later in this section.

Definition of Skolem machine operations

– A Geolog rule ANT ⇒ CONS is applicable to an SM tape T , provided that
it is the case that all of the terms of ANT can be simultaneously matched
against ground terms (no free variables) written on T . (It may be that ANT
can be matched against T in more than one way; for example, rule #3 and
the third tape of Figure 3.)

– If the rule ANT ⇒ CONS is applicable to tape T , then for some matching
substitution σ apply σ to CONS and then expand tape T using σ(CONS ).

– In order to expand tape T by σ(CONS ) = C1; C2; . . . ; Ck copy tape T making
k− 1 new tapes T2, T3, . . . , Tk, and then extend T using C1, extend T2 using
C2, . . . , and extend Tk using Ck. (No copying if k = 1.)



186 J. Fisher and M. Bezem

--------------------------------------------
true domain(sk1) p(sk1) q(sk1) u(sk1) false

--------------------------------------------
--------------------------------------
true domain(sk1) p(sk1) r(sk1) u(sk2)

--------------------------------------
---------------------------------------------------------------
true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2)

---------------------------------------------------------------

Fig. 5. Goal tape, rule #4

--------------------------------------------
true domain(sk1) p(sk1) q(sk1) u(sk1) false

--------------------------------------------
-------------------------------------------
true domain(sk1) p(sk1) r(sk1) u(sk2) goal

-------------------------------------------
-------------------------------------------------------------------
true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2) goal

-------------------------------------------------------------------

Fig. 6. After applying rule #5 and then #6, HALTED

– In order to extend a tape T using a conjunction C, suppose that X1, . . . , Xp

are all of the free existential variables in C. Create new constants cj , 1 ≤
j ≤ p and substitute cj for Xj in C, obtaining C′, and then write each of
the terms of C′ on tape T . (It is mandatory that the constant is new with
respect to the theory and the tape.)

Notice that only ground terms ever appear on any SM tape. Thus the matching
algorithm does not really need the full power of general term unification. Simple
left-to-right term matching suffices.

Given an SM with tapes T1, . . . , Tt, t ≥ 0, we say a tape is saturated if no
previously satisfied rule can be applied to it. A tape is halted if it is either
saturated or contains goal or contains false (any of which could occur at the
same time).

An SM is called halted if all its tapes are halted, it is halted successfully if it
is halted with all tapes containing either goal or false.

The set of terms on any saturated tape that is not successfully halted is said
to be a counter model.

Suppose that we write a Geolog theory in the form

T = A ∪G ∪ F (6)

where A is the axioms, G contains all of the affirming goal rules and F contains
all of the rejecting false rules. It is intended that A contains all the rules of the
theory other than the goal rules and the false rules and that A, G, and F are
mutually disjoint sets.



Query Completeness of Skolem Machine Computations 187

The Geolog query Q for a Geolog theory T = A ∪ G ∪ F is the disjunctive
normal form Q = C1; C2; . . . ; Ck consisting of all of the conjunctions Ci such
that either Ci appears as antecedent of one of the goal rules (in G) or of one of
the false rules (in F ). As before, the free variables in Q are taken to be existential
variables. The scope of a variable X appearing in a particular Ci (within Q) is
restricted to Ci.

We say that a Geolog theory T supports its query Q if there is a successfully
halted SM such that each tape satisfies some Ci.

Theorem 1. If theory T supports its query Q then Q is a logical consequence of
the axioms.

2 Complete Geolog Trees

To motivate the general definitions, consider first the following simple Geolog
theory, G1.

true => a ; b . % #1
true => c, d . % #2
a => goal . % #3
b, c => e . % #4
e, d => false . % #5

For the definition of a Geolog trees we consider the Geolog theory itself to
be an ordered sequence of Geolog rules. Reference will be made to the rules of
theory G1using their serial order (display notation: #n).The order will turn out
to be irrelevant to the branch sets defined by the branches in these trees, and the
branch sets will be the important semantic objects: They will be partial logical
models (or possibly counter-models).

A complete Geolog tree of level 0, for any ordered Geolog theory, consists of just
the root node true. The level 0 tree is, obviously, independent of the rule order.
Figure 7 shows the complete Geolog tree of level 1 for the ordered theory G1.

Fig. 7. Complete tree for G1, level 1

The rootof anyGeolog tree is theuniqueatom true,which is the completeGeolog
tree of level 0. The complete level 1 tree expands (and extends) the level 0 tree.

The first applicable rule for level 1 in our example is #1, and this constructs
two branches for the growing tree. The second applicable rule (#2) adds elements



188 J. Fisher and M. Bezem

to the growing tree along both branches because true is an ancestor for both
branches. Notice that the consequents maintain a similar order of appearance
(specifically, top-down) in the tree, as they appear in the consequence of rule #2
(specifically, left-to-right).

At level 2, rule #3 applies to the left branch of the complete tree for level 1,
and rule #4 applies to the right branch, so a graphical depiction of the complete
Geolog tree for G1 for level 2 is given in Figure 8.

Fig. 8. Complete tree for G1, level 2

Finally, at level 3, rule #5 applies to the right branch in Figure 8, as shown
in Figure 9. At this stage, level #3, the tree is saturated because each branch
contains either goal or false.

Fig. 9. Complete tree for G1, level 3, with levels marked

Now let us suppose that the rules in the theory G1 are reordered, for example

true => c, d . % #2
true => a ; b . % #1
b, c => e . % #4
e, d => false . % #5
a => goal . % #3



Query Completeness of Skolem Machine Computations 189

In this case the complete Geolog trees of levels 0, 1, 2, and 3 could be depicted
as shown in Figure 10.

Fig. 10. Complete tree rules reordered, level 3, with levels marked

Notice that the level branch sets are the same. A branch set for level k consists
of the set of all facts on a branch of the complete level k tree from the root of
the tree down to the leaf of the branch. The branch sets for either tree, Figure
9 or 10 are

level 0: {true}
level 1: {a,c,d}, {b,c,d}
level 2: {a,c,d,goal}, {b,c,d,e}
level 3: {a,c,d,goal}, {b,c,d,e,false}

The query for theory G1 is Q = a; d, e and the level 3 branch sets also represent
successfully halted tapes for a Skolem machine for G1.

Another example is afforded by the following Geolog theory, G2. G2 does not
support its query. Figure 11 shows some of the complete trees for G2.

true => p(a) . % #1
p(X) => q(f(X)) ; p(f(X)) . % #2
q(X) => goal . % #3

For G2 the complete trees are unbounded, meaning simply that the number
of nodes in the tree grows without bound as the level increases. A corresponding
Skolem machine would have an unbounded number of possible tapes.

More formally, suppose that G is an arbitrary Geolog theory. We define a
complete Geolog tree for G of level k by induction on k. The unique complete
Geolog tree T0 of level 0 for G is just the root tree, already describe. The single
branch set for T0 is {true}. Suppose that Tk is the complete Geolog tree for
G of level k having branch sets Bi. It is assumed that any branch of Tk which
contains either goal or false has that node as a leaf of the branch. Then Tk+1 is
defined as follows. The branches having leaf goal of false are not extended; they
are considered to be saturated. For any branch B of Tk not having leaf goal nor



190 J. Fisher and M. Bezem

Fig. 11. The infinite tree for G2 . . .

false let us assume that r1, r2, . . . rz is a complete ordered list of all possible
applicable instances of geolog rules which are not already satisfied on B. (We
assume that the specific order is determined by the order that the rules are given
in G. These ground instances may have arisen from the same or from different
rules.) Use r1 to extend B in the same way as if B were a corresponding Skolem
machine tape, as described in the previous section. However, if r1 is a splitting
rule, then split the branch B of Tk rather than reproduce the tape B and then
extend the copies. (If r1 is not a splitting rule then B has a unique extension.)
Assume that this produces m branches B1, . . . , Bm, as shown in Figure 12.

Fig. 12. Expanding branch B using first applicable rule

If any of the extended branches Bj has leaf goal of false , that branch is
considered to be saturated, and it is not extended (or expanded) any further.
Continuing, we now apply r2 to each of the new branches not having leaf goal
of false, then r3 to the resulting branches, until all of the rules . . . rz have been
used to expand all of the previous branches not having leaf goal of false , using
the process described for r1, corresponding to Figure 12. The tree Tk+1 is the



Query Completeness of Skolem Machine Computations 191

result of this double induction for all branches B of Tk and all resulting applica-
ble rules for each B (but never expand leaf goal of false).

Theorem 2. Suppose that Q is the query for Geolog theory G and that Q is a
logical consequence of G. Then G supports Q.

Proof Sketch. The collection of all complete Geolog trees Tk for k = 0, 1, 2, . . .
defines a (possibly infinite) tree T . Each node in T has finitely many children.
Branch sets correspond to Herbrand models (closed term models) in the usual
sense [2], but with the Herbrand basis based on the signature plus the generated
constants. Note that, by construction, for each branch set B of Tk, any false
instance of any rule is applicable and hence satisfied in all extensions of B in
Tk+1.

If T is a finite tree and some branch set B does not satisfy any of the disjuncts
of Q then B would satisfy the axioms of G but not Q. Since Q is a logical
consequence of the axioms of G this case is not possible and so if T is finite then
the branch sets of T correspond to a successfully halting Skolem machine and
so G supports Q.

If T is infinite then, by König’s lemma [3], T has an infinite branch. If none
of the branch sets corresponding to this infinite branch satisfies any disjunct of
Q then the set of nodes on this branch is a counter model. Since Q is a logical
consequence of the axioms of G this case is not possible. Thus T is in fact a
finite tree, and every disjunct of Q is satisfied on one of the branch sets of T . �

3 Discussion and Conclusion

Theorem 1 is a logical correctness result for Skolem machine consequences:
Skolem machines compute queries for Geolog theories and supported queries
are logical consequences of the axioms of a theory. Theorem 2 concerns the log-
ical completeness of SM computations: If the query for a Geolog theory is a
logical consequence of the axioms then the corresponding Skolem machine halts
succesfully in a configuration that supports the query.

It was claimed above that Skolem machines and Turing machines have the
same computational power. In order to see this we remark that the following
Geolog rules can be used to generate new constants representing natural num-
bers, with s the successor relation:

true => nat(0)
nat(X) => nat(Y),s(X,Y)

Given this, it is not difficult to encode one’s favorite Turing-complete machine
model as a Skolem machine. As shown in [1], encoding counter machines [4] (also
called register machines) is particularly easy. Note that the encoding does not
use function symbols.

The tree expansion definition of Tk given prior to Theorem 2 character-
izes a kind of breadth-first approach to proving support. The general issue of



192 J. Fisher and M. Bezem

computational completeness obviously depends on ordered strategies for pick-
ing rules. It is not generally decidable whether a Geolog theory supports its
query. Future papers will address the issue of partial completeness for ordered
(depth-first) proof search for Geolog theories, as well as proof procedures that
distinguish goal and false rules.

The website www.csupomona.edu/~jrfisher/www/geolog/ provides additi-
onal information about the Geolog language, specific interpreters for computing
Geolog, and many mathematical examples.

References

1. Bezem, M.: On the Undecidability of Coherent Logic. In: Middeldorp, A., van Oost-
rom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps
on the Road to Infinity. LNCS, vol. 3838, pp. 6–13. Springer, Heidelberg (2005)

2. Herbrand, J.: Logical Writings. Warren, D., Goldfarb, D. (eds.), Reidel Publishing
Company, Springer, Heidelberg (2006)

3. König, D.: Theorie der endlichen und unendlichen Graphen, Akademische Verlagsge-
sellschaft. Leipzig (1936) (Translated from German by McCoart, R., Theory of finite
and infinite graphs, Birkhauser (1990))

4. Minsky, M.L.: Recursive unsolvability of Post’s problem of ‘tag’ and other topics in
theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

5. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen.
Skrifter I, vol. 4, pp. 1–36, Det Norske Videnskaps-Akademi (1920) (also in Fenstad,
J.E. (ed.), Selected Works in Logic by Th. Skolem, pp. 103–136, Universitetsforlaget,
Oslo (1970))

www.csupomona.edu/~jrfisher/www/geolog/


More on the Size of Higman-Haines Sets:

Effective Constructions

Hermann Gruber1, Markus Holzer2, and Martin Kutrib3

1 Institut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstraße 67, D-80538 München, Germany

gruberh@tcs.ifi.lmu.de
2 Institut für Informatik, Technische Universität München

Boltzmannstraße 3, D-85748 Garching bei München, Germany
holzer@in.tum.de

3 Institut für Informatik, Universität Giessen
Arndtstraße 2, D-35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. A not well-known result [9, Theorem 4.4] in formal language
theory is that the Higman-Haines sets for any language are regular, but
it is easily seen that these sets cannot be effectively computed in general.
Here the Higman-Haines sets are the languages of all scattered subwords
of a given language and the sets of all words that contain some word
of a given language as a scattered subword. Recently, the exact level of
unsolvability of Higman-Haines sets was studied in [10]. We focus on lan-
guage families whose Higman-Haines sets are effectively constructible. In
particular, we study the size of Higman-Haines sets for the lower classes of
the Chomsky hierarchy, namely for the families of regular, linear context-
free, and context-free languages, and prove upper and lower bounds on
the size of these sets.

1 Introduction

Higman’s lemma [9] and its generalization, namely Kruskal’s Tree Theorem [12],
can be used to show that certain rewriting systems terminate. Nevertheless, the
result of Higman is not so well known and was frequently rediscovered in the
literature, e.g., [8,13,14]. Although Higman’s result appears to be only of theo-
retical interest, it has some nice applications in formal language theory. It seems
that one of the first applications has been given by Haines in [8, Theorem 3],
where it is shown that the set of all scattered subwords, i.e., the Higman-Haines
set Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }, and the set of
all words that contain some word of a given language, i.e., the Higman-Haines
set Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }, are both regular
for any language L ⊆ A∗. Here, ≤ refers to the scattered subword relation. As
pointed out in [8], this is an exceptional property which is quite unexpected.
Further applications and generalizations of Higman’s result can be found, e.g.,
in [4,5,11,13].

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 193–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



194 H. Gruber, M. Holzer, and M. Kutrib

It is worth mentioning that Down(L) and Up(L) cannot be obtained con-
structively in general. This is clear, because L is empty if and only if Down(L)
and Up(L) are empty, but the question whether or not a language is empty
is undecidable for recursively enumerable languages and decidable for regular
ones. Thus, as expected, for the family of recursively enumerable languages
the Higman-Haines sets are not constructible, while it is not hard to see that
for regular languages the construction becomes effective. But where exactly is
the borderline between language families with non-constructive and construc-
tive Higman-Haines sets? One might expect that, e.g., the family of context-free
languages has non-constructive Higman-Haines sets, but surprisingly this is not
the case, as proven in [14]. On the other hand, recently it was shown in [10]
that, for instance, the family of Church-Rosser languages has non-constructive
Higman-Haines sets. This language family lies in between the regular languages
and the growing context-sensitive languages, but is incomparable to the family
of context-free languages [1]. Moreover, in [10] the exact level of unsolvability
of the Higman-Haines sets for certain language families is studied. Thus, the
non-constructive side of Higman-Haines sets is well studied, but is there more to
be known about effective constructibility issues as presented in [14]? Moreover,
are there any results about descriptional complexity issues? To our knowledge
this is not the case, except for some results about regular languages accepted
by nondeterministic finite automata in [10]. This is the starting point of our
investigations about effective Higman-Haines set sizes. In particular we con-
sider the problem of computing the Higman-Haines sets induced by the families
of regular, context-free, and linear context-free languages. For the size of the
Higman-Haines sets generated by regular languages upper and lower bounds are
presented. That is, we prove that an exponential blow-up is sufficient and neces-
sary in the worst case for a deterministic finite automaton to accept the Higman-
Haines set Down(L) or Up(L) generated by some language that is represented
by another deterministic finite automaton. This nicely contrasts the result about
nondeterministic finite automata where a matching upper and lower bound on
the size of Higman-Haines sets is shown [10]. Furthermore, we investigate the
descriptional complexity of the Higman-Haines sets when the underlying device
is a context-free or linear context-free grammar.

The paper is organized as follows. The next section contains preliminaries and
basics about Higman-Haines sets. Then Section 3 first recalls the known upper
and lower bounds for nondeterministic finite automata [10], and then studies
the size of the Higman-Haines set for regular languages in terms of deterministic
finite automata size. In addition, Higman-Haines sets induced by context-free
and linear context-free languages are investigated.

2 Preliminaries

We denote the set of non-negative integers by N. The powerset of a set S is
denoted by 2S . For an alphabet A, let A+ be the set of non-empty words w
over A. If the empty word λ is included, then we use the notation A∗. For the



More on the Size of Higman-Haines Sets: Effective Constructions 195

length of w we write |w|. For the number of occurrences of a symbol a in w
we use the notation |w|a. Set inclusion is denoted by ⊆, and strict set inclusion
by ⊂. Let v, w ∈ A∗ be words over alphabet A. We define v ≤ w if and only
if there are words v1, v2, . . . , vk and w1, w2, . . . , wk+1, for some k ≥ 1, vi ∈ A∗,
wi ∈ A∗, such that v = v1v2 . . . vk and w = w1v1w2, v2 . . . wkvkwk+1. In case
of v ≤ w we say that v is a scattered subword of w. Let L be a language over
alphabet A. Then

Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }
and

Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }

are the Higman-Haines sets generated by L. The next theorem is the surprising
result of Haines. It has been shown about half a century ago. Actually, it is a
corollary of Higman’s work, but let us state it as a theorem.

Theorem 1 ([8,9]). Let L be an arbitrary language, then both Down(L) and
Up(L) are regular.

In order to talk about the economy of descriptions we first have to define what
is meant by the size of automata and grammars. In general, we are interested
to measure the length of the string that defines an automaton or grammar. In
particular, we sometimes use more convenient size measures, if there is a recur-
sive upper bound for the length of the defining string dependent on the chosen
size measure. For example, for context-sensitive and context-free grammars M ,
the size |M | equals the total number of occurrences of terminal and nontermi-
nal symbols in the productions. For deterministic and nondeterministic finite
automata M , the size |M | equals the product of the number of states and the
number of input symbols.

3 Effective Higman-Haines Set Sizes

Next we turn to the family of regular languages and then to the family of context-
free languages, whose Higman-Haines sets can effectively be constructed [14]. We
are interested in the constructions itself as well as in the sizes of the Higman-
Haines sets.

3.1 Regular Languages

Let M = (S, A, δ, s0, F ) be a nondeterministic finite automaton (NFA), where S
is the finite set of internal states, A is the finite set of input symbols, s0 ∈ S is
the initial state, F ⊆ S is the set of accepting states, and δ : S× (A∪{λ}) → 2S

is the partial transition function. An NFA is deterministic (DFA) if and only if
|δ(s, a)| ≤ 1, |δ(s, λ)| ≤ 1, and |δ(s, a)| = 1 ⇐⇒ |δ(s, λ)| = 0, for all s ∈ S and
a ∈ A. Without loss of generality, we assume that the NFAs are always reduced.
This means that there are no unreachable states and that from any state an
accepting state can be reached.



196 H. Gruber, M. Holzer, and M. Kutrib

Concerning the size of an NFA accepting Down(L(M)) or Up(L(M)) for a
given NFA M , one finds the following situation, which was proven in [10].

Lemma 2. Let M be an NFA of size n. Then size n is sufficient and necessary
in the worst case for an NFA M ′ to accept Down(L(M)) or Up(L(M)). The
NFA M ′ can effectively be constructed.

In the remainder of this subsection we consider DFAs. First observe, that the
results presented so far heavily rely on nondeterminism, i.e., even when starting
with a DFA M , the resulting automata accepting Down(L(M)) or Up(L(M))
are nondeterministic in general. So, applying the well-known power-set construc-
tion gives an upper bound on the size of an equivalent DFA.

Corollary 3. For any DFA M of size n, one can effectively construct a DFA
accepting Down(L(M)) or Up(L(M)) whose size is at most 2n. � 

For the next two theorems we need some more notations. Let L ⊆ A∗ be an
arbitrary language. Then the Myhill-Nerode equivalence relation≡L is defined as
follows: For u, v ∈ A∗, let u ≡L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈
A∗. It is well known that the number of states of the minimal deterministic finite
automaton accepting the language L ⊆ A∗ equals the index, i.e., the cardinality
of the set of equivalence classes, of the Myhill-Nerode equivalence relation.

We continue our investigations by proving a non-trivial lower bound for DFAs
accepting the language Down(L(M)), for some given DFA M , that is quite close
to the upper bound of the previous corollary.

Theorem 4. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA of size (n + 2)(n + 1)2, such that size 2Ω(n log n) is
necessary for any DFA accepting Down(Ln).

Proof. Let A = {a1, a2, . . . , an} and #, $ �∈ A. Consider the witness language
Ln = {#j$w | w ∈ A∗, j ≥ 0, i = j mod n, |w|ai+1 = n } ⊆ (A ∪ {#, $})∗.
A DFA accepting language L3 is depicted in Figure 1. It is not hard to see
that any DFA accepting Ln needs n + 1 states for each letter ai to count up
to n. Moreover, for the #-prefix n states are used, and finally one non-accepting
sink state is needed. This results in n(n + 1) + n + 1 states, which gives size
(n + 2)(n2 + 2n + 1) = (n + 2)(n + 1)2. It is not hard to verify that the DFA is
minimal. Recall the construction of an NFA for the down-set. Then one observes
that Down(Ln) = {#jaw | w ∈ A∗, j ≥ 0, a ∈ {$, λ} and

∨n
i=1 |w|ai ≤ n }.

It remains to be shown that the minimal DFA accepting Down(Ln) has at
least (n + 1)n + 2 states. First observe that any two different words of the
form wi1,i2,...,in = $ai1

1 ai2
2 . . . ain

n with 0 ≤ ij ≤ n and 1 ≤ j ≤ n are non-
equivalent with respect to the Myhill-Nerode relation ≡Down(Ln). Let wi1,i2,...,in

and wi′
1,i′

2,...,i′
n

be two different words. Then ik �= i′k, for some 1 ≤ k ≤ n.
Without loss of generality we assume ik < i′k. Then the word

wi1,i2,...,in · an+1
1 an+1

2 . . . an+1
k−1a

(n+1)−i′
k

k an+1
k+1 . . . an+1

n



More on the Size of Higman-Haines Sets: Effective Constructions 197

$ a1 a1 a1

$ a2 a2 a2

$ a3 a3 a3

a2, a3 a2, a3 a2, a3 a2, a3

a1, a3 a1, a3 a1, a3 a1, a3

a1, a2 a1, a2 a1, a2 a1, a2

#

#

#

Fig. 1. A DFA of size 5 · 16 accepting Down(L3)—the non-accepting sink state is not
shown

belongs to Down(Ln) because letter ak appears at most n times. On the other
hand, the word wi′

1,i′
2,...,i′

n
·an+1

1 an+1
2 . . . an+1

k−1a
(n+1)−i′

k

k an+1
k+1 . . . an+1

n is not mem-
ber of Down(Ln) since all letters ai, for 1 ≤ i ≤ n, appear at least n + 1
times. Hence, there are (n + 1)n different equivalence classes induced by the
words wi1,i2,...,in . Moreover, none of the words λ, wi1,i2,...,in with 0 ≤ ij ≤ n
and 1 ≤ j ≤ n, and $an+1

1 an+1
2 . . . an+1

n belong to the same equivalence classes.
For λ and wi1,i2,...,in this is seen by concatenating the words with $, and the
remaining pairs are shown to be non-equivalent by concatenating them with the
empty word λ. Therefore, we have obtained at least (n + 1)n + 2 equivalence
classes. In fact, one can construct a DFA with exactly this number of states
accepting Down(Ln). The details are left to the reader. Therefore, 2Ω(n log n) is
a lower bound on the size of any DFA accepting Down(Ln). � 

Thenext theoremgives a lower bound for the size of anyDFAacceptingUp(L(M)),
for a given DFA M . The proof is similar to the proof of the previous theorem.

Theorem 5. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA of size (n + 2)(n + 1)2, such that size 2Ω(n log n) is
necessary for any DFA accepting Up(Ln). � 

Finally, it is worth to mention that the lower bounds of the previous two theorems
slightly improve when the number of states is used to measure the size of DFAs.
The next theorem summarizes the lower bounds.

Theorem 6. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA with (n + 1)2 states, such that 2Ω(n log n) states are
necessary for any DFA accepting Down(Ln). A similar statement is valid for
Up(Ln). � 

3.2 Context-Free and Linear Context-Free Languages

In this subsection we are interested in the size of NFAs accepting the Higman-
Haines sets for context-free or linear context-free grammars. Recall that we use



198 H. Gruber, M. Holzer, and M. Kutrib

the total number of occurrences of terminal and nonterminal symbols in the
productions as size measure for grammars. Let G = (N, T, P, S) be a context-
free grammar, where N is the finite set of nonterminals, T is the finite set
of terminals, P ⊆ N × (N ∪ T )∗ is the finite set of productions, and S ∈ N
is the axiom. A context-free grammar G = (N, T, P, S) is linear context free
if P ⊆ N × T ∗(N ∪ {λ})T ∗. Without loss of generality, we assume that the
context-free grammars are always reduced, i.e., that there are no unreachable or
unproductive nonterminals. Moreover, in this section we further assume that the
context-free grammars are in Chomsky normalform, i.e., the productions are of
the form P ⊆ N × (N2 ∪ T ). For linear context-free grammars the normalform
reads as P ⊆ N × (NT ∪ TN ∪ T ).

As in the previous subsection we first show how to construct an NFA for
Down(L(G)). In order to simplify the analysis we assume that the right-hand
sides of the productions are described by NFAs with input alphabet N ∪ T .
We refer to such a grammar as an extended (linear) context-free grammar. Note,
that one can assume that for each extended context-free grammar there is exactly
one NFA for each nonterminal as a right-hand side. The following theorem is a
detailed analysis of the inductive construction presented in [14].

Theorem 7. Let G be a context-free grammar of size n. Then size O(n2
√

2n log n)
is sufficient for an NFA M ′ to accept Down(L(G)). The NFA M ′ can effectively
be constructed.

Proof. First, the context-free grammar G = (N, T, P, S) is transformed into an
extended context-free grammar G′—the details are omitted here. Secondly, we
observe that each nonterminal appears at the left-hand side of at least one pro-
duction, respectively, and at least one nonterminal is rewritten by some terminal
symbol. Therefore, the number of nonterminals is at most �n

2 �.
Next, we inductively proceed as in [14]. For a nonterminal A ∈ N we set

the alphabet VA = (N \ {A}) ∪ T , and define the extended context-free gram-
mar GA = ({A}, VA, PA, A) with PA = {A → M | (A → M) ∈ P}, where M
in (A → M) ∈ P refers to the NFA of the right-hand side of the production.
Further, we set LA = L(GA). Observe, that GA is an extended context-free gram-
mar with only one nonterminal and, thus, one can obtain an NFA MA describing
Down(L(GA)) over the alphabet VA by a subroutine to be detailed below. Then
the induction is as follows: Let G0 = G′. If A is not the axiom S of G0, we can
replace each A-transition occurring in the right-hand side automata of non-
A-productions of G0 with a copy of MA to obtain an extended grammar G1

having one nonterminal less than G0, and Down(L(G1)) = Down(L(G0)).
This construction step can be iterated for at most �n

2 � − 1 times, yielding ex-
tended context-free grammars G2, G3, . . . , G�n

2 �−1, satisfying Down(L(Gi)) =
Down(L(Gi+1)), for 0 ≤ i < �n

2 �, where in the latter grammar G�n
2 �−1 the only

remaining nonterminal is the original axiom S of G. Finally, we apply the men-
tioned subroutine to construct the NFA M ′ which results in the finite automaton
accepting the language Down(L(G)).

It remains to describe the above mentioned subroutine and deduce an upper
bound on the size of the automaton M ′. The subroutine works for an extended



More on the Size of Higman-Haines Sets: Effective Constructions 199

grammar GA = ({A}, VA, {A → M}, A) with only one nonterminal. Then we
distinguish two cases:

1. The production set given by L(M) is linear, i.e., L(M) ⊆ V ∗
A{A, λ}V ∗

A, or
2. the production set given by L(M) is nonlinear.

In the first case, we construct an NFA MT with L(MT ) = L(M) ∩ V ∗
A , which is

obtained by removing all A-transitions from M . Similarly, we build NFAs MP

and MS for the quotients

L(MP ) = { x ∈ V ∗
A | xAz ∈ L(M) for some z ∈ (VA ∪ {A})∗ } and

L(MS) = { z ∈ V ∗
A | xAz ∈ L(M) for some x ∈ (VA ∪ {A})∗ }.

Then it is straightforward to construct an NFA MA having a single start state
and a single accepting state with

L(MA) = Down(L(MP )∗ · L(MT ) · L(MS)∗) = Down(L(GA)).

The number of alphabetic transitions, i.e., non-λ-transitions, in MA is at most
three times that of M . In the second case, i.e., L(M) is nonlinear, we construct
automata MP , MT , MS, and MI , where the former three NFAs are as in the
previous case, and MI accepts the quotient

L(MI) = { y ∈ V ∗
A | xAyAz ∈ L(M) for some x, z ∈ (VA ∪ {A})∗ }.

Again, it is not hard to construct an NFA MA with a single start and a single
accepting state accepting

L(MA) = Down((L(MT ) ∪ L(MP ) ∪ L(MI) ∪ L(MS))∗) = Down(L(GA))

with no more than four times as many alphabetic transitions as M .
The upper bound on the size of an NFA accepting Down(L(G)) is deduced

as follows: For an extended context-free grammar G, let |G|t denote the sum of
the number of alphabet transitions in the right-hand side automata in the pro-
ductions of G. We obtain the recurrence |Gk|t ≤ 4 · (|Gk−1|t)2, for 1 ≤ k < �n

2 �,
describing the substitution step in the kth iteration to construct Gk from Gk−1.
Taking logarithms and setting Hk = log |Gk|t, we obtain a linear recurrence
Hk ≤ 2 · Hk−1 + 2. Solving the linear recurrence, we obtain the inequality
Hk ≤ 2k ·H0 + 2k+1 − 2. Since |G0|t ≤ n, we have

H�n
2 �−1 ≤ 2�n

2 �−1 ·H0 + 2�n
2 � − 2 ≤ 2�n

2 �−1 · log n + 2�n
2 � − 2.

When replacing the axiom in G�n
2 �−1 in the final step, the number of alphabetic

transitions is increased at most by a factor of four, which results in

|G� n
2 �|t ≤ 22�n

2 �−1·log n+2�n
2 � ≤ 22�n

2 �−1·log n+2�n
2 �−1·log n ≤ 2

√
2n log n,

for all n ≥ 4. It remains to be shown that for every NFA with n alphabeti-
cal transitions, there is an equivalent NFA with at most O(n) states. An easy



200 H. Gruber, M. Holzer, and M. Kutrib

construction can be used to remove all non-initial states having neither ingo-
ing nor outgoing alphabetical transitions after adding some extra λ-transitions
where necessary. By a simple counting argument, we find that the latter automa-
ton has at most 2n + 1 states. Hence, this shows that the NFA M ′ accepting
Down(L(G)) has size at most O(n · 2

√
2n log n). � 

For the lower bound we obtain:

Theorem 8. For every n ≥ 1, there is a language Ln over a unary alphabet gen-
erated by a context-free grammar of size 3n+2, such that size 2Ω(n) is necessary
for any NFA accepting Down(L(G)) or Up(L(G)).

Proof. For every n ≥ 1, consider the finite unary languages Ln = {a2n} gener-
ated by the context-free grammar G = ({A1, A2, . . . , An+1}, {a}, P, A1) with the
productions Ai → Ai+1Ai+1, for 1 ≤ i ≤ n, and An+1 → a. Obviously, gram-
mar G has size 3n + 2. The word a2n

is the longest word in Down(L(G)) and
the shortest word in Up(L(G)). In both cases, any finite automaton accepting
the language takes at least as many states as the length of the word. So, it takes
at least least 2n states and, thus, has at least size 2n. � 

We turn our attention to the construction of an NFA accepting Up(L(G)), for a
context-free grammar G. To this end, we define the basis of a language as follows:
A word w ∈ L is called minimal in L if and only if there is no different v ∈ L with
v ≤ w. The set of minimal elements in L is called a basis of the language Up(L).
Observe that any shortest word in L is minimal in L, and any such word must
therefore be part of the basis. In fact, Higman’s Lemma [9] says that for any
arbitrary language L there exists a natural number n, which depends only on L,
such that Up(L) =

⋃
1≤i≤n Up({wi}), for some words wi ∈ L with 1 ≤ i ≤ n.

Sometimes the result is called the finite basis property. For the construction of
an NFA accepting Up(L(G)), where G is a context-free grammar with terminal
alphabet A, we proceed as follows:

1. Determine the basis B ⊆ A∗ of the language Up(L(G)) with the algorithm
presented in [14].

2. Construct an NFA M accepting language B, and apply the construction
given in the previous subsection to obtain an NFA M ′ accepting Up(B),
which equals the language Up(L(G)) by the finite basis property.

The first step basically consists in inductively computing B starting from B0 = ∅,
and Bi+1 is obtained by extending Bi by a shortest word w in L(G)\Up(Bi), i.e.,
setting Bi+1 = Bi∪{w}. This process is repeated as long as (L(G)\Up(Bi)) �= ∅.
If this condition is met, the set B equals the last extended Bi. Since context-free
languages are closed under set difference with regular sets, the set B can be
effectively constructed.

Theorem 9. Let G be a context-free grammar of size n. Then an NFA M ′ of
size O(

√
n22n log n) is sufficient to accept Up(L(G)). The NFA M ′ can effectively

be constructed.



More on the Size of Higman-Haines Sets: Effective Constructions 201

In the remainder of this section we concentrate on linear context-free lan-
guages.

Theorem 10. Let G be a linear grammar of size n. Then an NFA M ′ of
size O

(√
2n2+ (3n+6)

2 log n−(4+log e)n
)

is sufficient to accept Down(L(G)). The
NFA M ′ can effectively be constructed.

Proof. Let G = (N, T, P, A1) with N = {Ai | 1 ≤ i ≤ m } be a linear
context-free grammar. The basic idea for the construction of M ′ is to inspect
the derivation trees of G and to modify the underlying grammar such that any
self-embedding derivation of the form A ⇒∗ xAz, for some A ∈ N and x, z ∈ T ∗,
is replaced by a derivation A ⇒∗ xA and A ⇒∗ Az, while the respective gen-
erated languages have the same Down-sets. In other words, the derivation that
produces the “coupled” terminal words x and z is made “uncoupled” by a right-
linear and a left-linear derivation. In order to make the construction work, one
has to take care about these self-embedded derivation parts in an appropriate
manner. For a formal treatment of the construction we need some notation.

Let A1 ⇒∗ w be a derivation of w ∈ T ∗. Then the inner nodes of the deriva-
tion tree form a path p = A1Ai1Ai2 · · ·Aik

. We can group the inner nodes as
follows: We call a subpath of p that represents a self-embedded derivation with
nonterminal A, i.e., which begins and ends with the same nonterminal A, an
A-block. A splitting of p into blocks is an ordered set B of blocks such that

1. any block in p is a subpath of exactly one element in B,
2. there is at most one A-block for each nonterminal A ∈ N .

A splitting always exists, as the first condition can be ensured by adding blocks
to B as long as necessary. Afterwards we can enforce the remaining conditions
by merging blocks. The order of the set B is given naturally by the occurrence
of blocks along the path. For such a splitting, we call a subpath connecting two
consecutive blocks an (A, B)-nonblock, if the first is an A-block and the second
one a B-block. By convention, the borders A and B are part of the nonblock. If
the first or the last nonterminal of the path are not part of blocks, we agree that
the paths connecting the ends to the first and last block are also nonblocks. A
simple example explaining our terminology is depicted in Figure 2, where it is
shown that a splitting is not necessarily unique.

Next, for each nonterminal A ∈ N we build NFAs MA,P and MA,S for the
quotients

L(MA,P ) = { x ∈ T ∗ | A ⇒∗ xAz for some z ∈ T ∗ } and
L(MA,S) = { z ∈ T ∗ | A ⇒∗ xAz for some x ∈ T ∗ }.

Then it is straightforward to construct an NFA MA having a single start state
and a single accepting state such that L(MA) is the Down-set of the set of all
partial derivations corresponding to an A-block, i.e.,

L(MA) = Down(L(MA,P )∗ · A · L(MA,S)∗).



202 H. Gruber, M. Holzer, and M. Kutrib

The number of states in MA is at most 2|N | ≤ n, and it contains a single A-
transition. Moreover, for every A, B ∈ N we build NFAs MA,I and M(A,B),I

taking care of the terminating derivation part and the nonblocks, namely

L(MA,I) = {y ∈ T ∗ | A ⇒∗ y is an acyclic derivation, y ∈ T ∗} and
L(M(A,B),I) = {xBz ∈ T ∗NT ∗ | A ⇒∗ xBz is an acyclic derivation, x, z ∈ T ∗}.

Here a derivation is said to be acyclic, if no nonterminal occurs more than once
in the derivation. The Down-set of all partial derivations corresponding to some
(A, B)-nonblock is given by L(M(A,B)) = Down(L(M(A,B),I)), the Down-set of
the terminating derivation part by L(M(A)) = Down(L(M(A,I))). We note two
features of L(M(A,B),I): First, all words in the language are at most of length |N |,
and secondly, by [2, Lemma 4.3.2], it contains at most 2|P |−1 words. Then the
construction given in [7] yields an NFA M(A,B),I with at most 3√

2
·nn

4 states and
at most 2n−1 many B-transitions accepting this language, as |Σ| ≤ n and |N | as
well as |P | cannot exceed n/2. The same bound on the number of states applies
to MA,I , and due to Lemma 2 and the constructions of NFAs for Down-sets of
NFA languages, the bounds on states and transitions apply also to M(A,B) and
M(A).

Finally, for every splitting B = {Ai1 , Ai2 , . . . , Aim} containing m blocks, we
obtain an NFA accepting the Down-set of all derivations A1 ⇒∗ w whose trees
admit a B-splitting by iterated substitution of transitions by NFAs. We start
with the terminating derivation part, i.e, the NFA M(Aim ) with no more than
H0 = 3√

2
·nn

4 states. Next we proceed in cycles. In each cycle k, two substitution
phases are performed. First, the current NFA, say with Hk states, replaces the
sole (Aim−k)-transition of the NFA MAim−k

. This results in at most Hk+n states.
Secondly, all (Aim−k)-transitions of the NFA M(Aim−k−1,Aim−k) are replaced by
the NFA constructed in the first phase. The result is an NFA with at most
2n−1(Hk +n)+H0 states. Clearly, the construction is completed after m cycles.

A1

A2

A2

A3

A3

A1

A4

A2

A3

A2

A7

A3

A5

A3

A6

A1

A3

A3

Fig. 2. Two splittings for the path p = A1, A4, A2, A3, A2, A7, A3, A5, A3, A6; blocks
are gray shaded and the derivation is drawn by a curled path, while nonblocks are
white and their derivation is drawn by a straight line



More on the Size of Higman-Haines Sets: Effective Constructions 203

For the number of states, we have to solve recurrence Hm = 2n−1(Hm−1+n)+H0

with H0 = 3√
2
· nn

4 . Unrolling yields the series

Hm = H0 + (H0 + n)
m∑

i=1

(2n−1)i = H0 + (H0 + n)
2(n−1)(k+1) − 1

2n−1 − 1
− 1.

Since m + 1 ≤ |N | ≤ n/2, this is less than or equal to

H0 + (H0 + n)
2

(n−1)n
2

2n−2
≤ H0 + (H0 + n)4

2
n2
2

2
3n
2
∈ O

(
n

n
4 2

n2
2

2
3n
2

)

= O
(√

2n2+ n
2 log n−3n

)
.

An important observation is that this automaton also accepts the Down-set
of all derivations whose trees admit some splitting in Down(B). So, it suffices
to consider |N |! relevant different splittings. Therefore, the number of states of
the NFA M ′ accepting Down(L(G)) is at most O

((
n
2

)
!
√

2n2+ n
2 log n−3n

)
. This

implies a size of O
((

n
2

)
!
√

2n2+ (n+4)
2 log n−3n

)
. Finally, Stirling’s approximation

yields O
((

n
2

)
!
)

= O
(√

n
(

n
2e

)n
2
)

= O
(√

2log n
√

2n log n
√

2−n(1+log e)
)

and, thus,
an upper bound of

O

(√
n
( n

2e

)n
2

√
2n2+ (n+4)

2 log n−3n

)
= O

(√
2n2+ (3n+6)

2 log n−(4+log e)n

)
.

� 
In order to show the lower bound we use the finite witness language Ln =
{wwR | w ∈ {a, b}n }, which can be generated by a linear context-free grammar
G = ({Ai, A

′
i, A

′′
i | 1 ≤ i ≤ n }, {a, b}, P, A1) with the productions Ai → aA′

i,
A′

i → Ai+1a, Ai → bA′′
i , A′′

i → Ai+1b, for 1 ≤ i < n, and An → aA′
n, A′

n → a,
An → bA′′

n, A′′
n → b. Since any NFA accepting Ln needs at least 2n states—see,

e.g., [6]—the next theorem reads as follows. Observe, that the lower bound also
holds for the up-set problem.

Theorem 11. For every n ≥ 1, there is a linear context-free language Ln over a
binary alphabet generated by a linear context-free grammar of size 12n− 2, such
that size 2Ω(n) is necessary for any NFA accepting Down(L(G)) or Up(L(G)).

� 
For the size of Up(L(G)), for some linear context-free grammar G of size n, we
argue as follows: The basis B of Up(L(G)) contains only words whose lengths are
at most n. Then by similar arguments as in the proof of Theorem 9 we obtain
the following result, which is much better than that for general context-free
grammars.

Theorem 12. Let G be a linear context-free grammar of size n. Then an
NFA M ′ of size O(

√
2(n+2) log n) is sufficient to accept Up(L(G)). The NFA M ′

can effectively be constructed. � 



204 H. Gruber, M. Holzer, and M. Kutrib

4 Conclusions

Several questions about the size of Higman-Haines sets remain unanswered. We
mention a few of them: (1) Can one obtain better matching upper and lower
bounds for context-free and linear context-free languages? Similarly, which are
better bounds for deterministic finite automata? (2) There are some other in-
teresting and important subfamilies of the context-free languages, e.g., unary,
bounded, deterministic or turn-bounded context-free languages. The sizes of the
corresponding Higman-Haines sets are worth studying. (3) Our investigations
are based on the special case of the scattered subword relation. Since the re-
sult of Higman and Haines only needs a well-partially-order one may ask similar
questions for other well-partially-orders as, e.g., for the Parikh subword quasi-
order or for monotone well-quasi-orders—see [3,11] for further results about these
well-quasi-orders.

References

1. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inform. Comput. 141, 1–36 (1998)

2. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

3. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theoret. Comput. Sci. 27, 311–332 (1983)

4. Fernau, H., Stephan, F.: Characterizations of recursively enumerable sets by pro-
grammed grammars with unconditional transfer. J. Autom., Lang. Comb. 4, 117–
152 (1999)

5. Gilman, R.H.: A shrinking lemma for indexed languages. Theoret. Comput.
Sci. 163, 277–281 (1996)

6. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

7. Gruber, H., Holzer, M.: Results on the average state and transition complexity of
finite automata. Descriptional Complexity of Formal Systems (DCFS 2006), Uni-
versity of New Mexico, Technical Report NMSU-CS-2006-001, pp. 267–275 (2006)

8. Haines, L.H.: On free monoids partially ordered by embedding. J. Combinatorial
Theory 6, 94–98 (1969)

9. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 2, 326–336 (1952)

10. Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theoret.
Comput. Sci. (to appear)

11. Ilie, L.: Decision problems on orders of words. Ph.D. thesis, Department of Math-
ematics, University of Turku, Finland (1998)

12. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Combinatorial Theory 13, 297–305 (1972)

13. van Leeuwen, J.: A regularity condition for parallel rewriting systems. SIGACT
News. 8, 24–27 (1976)

14. van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids.
Discrete Mathematics 21, 237–252 (1978)



Insertion-Deletion Systems with One-Sided

Contexts

Artiom Matveevici1,2, Yurii Rogozhin2,4, and Sergey Verlan3

1 Moldova State University
60, str. A.Mateevici, MD-2009, Chişinău, Moldova

martiom@mail.md
2 Institute of Mathematics and Computer Science

Academy of Sciences of Moldova
5, str. Academiei, MD-2028, Chişinău, Moldova

rogozhin@math.md
3 LACL, Département Informatique, Université Paris 12,

61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

4 Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract. It was shown in (Verlan, 2005) that complexity measures for
insertion-deletion systems need a revision and new complexity measures
taking into account the sizes of both left and right context were proposed.
In this article we investigate insertion-deletion systems having a context
only on one side of insertion or deletion rules. We show that a minimal
deletion (of one symbol) in one-symbol one-sided context is sufficient for
the computational completeness if a cooperation of 4 symbols is used for
insertion rules and not sufficient if an insertion of one symbol in one-
symbol left and right context is used. We also prove the computational
completeness for the case of the minimal context-free deletion (of two
symbols) and insertion of two symbols in one-symbol one-sided context.

Keywords: insertion-deletion systems, universality, computational non-
completeness.

1 Introduction

The operations of insertion and deletion are fundamental in formal language
theory, and generative mechanisms based on them were considered (with lin-
guistic motivation) since “old times”, see [6] and [2]. Related formal language
investigations can be found in several places; we mention only [3], [5], [8], [9].
In the last years, the study of these operations has received a new motivation,
from molecular computing, see [1], [4], [10], [12].

In general form, an insertion operation means adding a substring to a given
string in a specified context, while a deletion operation means removing a sub-
string of a given string from a specified context. A finite set of insertion-deletion

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 205–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



206 A. Matveevici, Y. Rogozhin, and S. Verlan

rules, together with a set of axioms provide a language generating device (an
InsDel system): starting from the set of initial strings and iterating insertion-
deletion operations as defined by the given rules we get a language. The number
of axioms, the length of the inserted or deleted strings, as well as the length of the
contexts where these operations take place are natural descriptional complexity
measures in this framework. As expected, insertion and deletion operations with
context dependence are very powerful, leading to characterizations of recursively
enumerable languages. Most of the papers mentioned above contain such results,
in many cases improving the complexity of insertion-deletion systems previously
available in the literature. However, the power of the above operations is not
necessarily related to the used context: the paper [7] contains an unexpected
result: context-free insertion-deletion systems with one axiom are already uni-
versal, they can generate any recursively enumerable language. Moreover, this
result can be obtained by inserting and deleting strings of a rather small length,
at most three.

The further study of context-free insertion-deletion systems led in [13] to the
complete description of this class. In particular, it was shown that if inserted or
deleted strings are at most of length two, then a specific subclass of the family
of context-free languages is obtained. This result showed that the traditional
complexity measures for insertion-deletion systems, in particular the total weight
based on the size of contexts, need a revision, because both systems from [12]
and [13] have same total weight, but different computational power. In the same
article, new complexity measures taking in account the sizes of both left and
right context were proposed.

In this article we investigate insertion-deletion systems which use a context
only on one side of insertion or deletion rules. Such systems are very similar
to context-free insertion-deletion systems where insertions or deletions are un-
controllable and may happen an arbitrary number of times at any place. We
investigate the case of a minimal deletion when the length of one context to-
gether with the length of the deleted string is at most two and we show three
computational completeness results and one non-completeness result based on
different combination of parameters. The article refines the borderline between
universality and non-universality (and even decidability) for insertion-deletion
systems and leaves a number of open problems related to other combinations of
parameters.

2 Prerequisites

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area – for
instance, [11] – for the unexplained details.

We denote by |w| the length of word w and by card(A) the cardinality of the
set A.

An InsDel system is a construct ID = (V, T, A, I, D), where V is an alphabet,
T ⊆ V , A is a finite language over V , and I, D are finite sets of triples of the form



Insertion-Deletion Systems with One-Sided Contexts 207

(u, α, v), α �= ε of strings over V , where ε denotes the empty string. The elements
of T are terminal symbols (in contrast, those of V −T are called nonterminals),
those of A are axioms, the triples in I are insertion rules, and those from D
are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the string α can
be inserted in between u and v, while a deletion rule (u, α, v) ∈ D indicates
that α can be removed from the context (u, v). Stated otherwise, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds
to the rewriting rule uαv → uv. We denote by =⇒ins the relation defined by
an insertion rule (formally, x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some
(u, α, v) ∈ I and x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion
rule (formally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D
and x1, x2 ∈ V ∗). We refer by =⇒ to any of the relations =⇒ins, =⇒del, and
denote by =⇒∗ the reflexive and transitive closure of =⇒ (as usual, =⇒+ is its
transitive closure).

The language generated by ID is defined by L(ID) = {w ∈ T ∗ | x =⇒∗ w,
for some x ∈ A}.

The complexity of an InsDel system ID = (V, T, A, I, D) is traditionally de-
scribed by the vector (n, m; p, q) called weight, where

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I or (v, α, u) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D or (v, α, u) ∈ D},

The total weight of ID is the sum γ = m + n + p + q.
However, it was shown in [13] that this complexity measure is not accurate

and it cannot distinguish between universality and non-universality cases (there
are families having same total weight but not the same computational power).
In the same article it was proposed to use the length of each context instead of
the maximum. More exactly,

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I},
m′ = max{|v| | (u, α, v) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D},
q′ = max{|v| | (u, α, v) ∈ D}.

Hence the complexity of an insertion-deletion system will be described by the
vector (n, m, m′; p, q, q′) that we call size. We also denote by INSm,m′

n DELq,q′

p

corresponding families of insertion-deletion systems. Moreover, we define the
total weight of the system as the sum of all numbers above: ψ = n + m + m′ +
p+q+q′. Since it is known from [13] that systems using a context-free insertion or
deletion of one symbol are not powerful, we additionally require n + m + m′ ≥ 2
and p + q + q′ ≥ 2.



208 A. Matveevici, Y. Rogozhin, and S. Verlan

If some of the parameters n, m, m′, p, q, q′ is not specified, then we write in-
stead the symbol ∗. In particular, INS0,0

∗ DEL0,0
∗ denotes the family of languages

generated by context-free InsDel systems. If some of numbers m, m′, q or q′ are
equal to zero, then we say that corresponding families have a one-sided context.

InsDel systems of a “sufficiently large” weight can characterize RE, the family
of recursively enumerable languages. A collection of these results may be found
in Section 4.

3 Systems with One-Sided Context

In this section we present results about insertion-deletion systems with one-sided
context, i.e., of size (n, m, m′; p, q, q′) where either m + m′ > 0 and m ∗m′ = 0,
or q + q′ > 0 and q ∗ q′ = 0, i.e., at least one of numbers in some couple is equal
to zero.

Our proof is based on the result from [12], where it was shown that insertion-
deletion systems of size (1, 1, 1; 1, 1, 1) generate all recursively enumerable lan-
guages. Firstly consider following lemma which presents a kind of normal form
for these systems.

Lemma 1. For any insertion-deletion system ID = (V, T, A, I, D) having the
size (1, 1, 1; 1, 1, 1) it is possible to construct an insertion-deletion system
ID2 = (V ∪ {X, Y }, T, A2, I2, D2 ∪ D′

2) of size (1, 1, 1; 1, 1, 1) such that
L(ID2) = L(ID). Moreover, all rules from I2 and D2 have the form (a, x, b),
where a, b �= ε and D′

2 = {(ε, X, ε), (ε, Y, ε)}.

Proof. Consider

A2 ={XwY | w ∈ A},
S2 ={(a, x, b) | (a, x, b) ∈ S and a, b �= ε}∪

{(z, x, b) | (ε, x, b) ∈ S, z ∈ V ∪ {X} and b �= ε}∪
{(a, x, z) | (a, x, ε) ∈ S, z ∈ V ∪ {Y } and a �= ε}∪
{(z1, x, z2) | (ε, x, ε) ∈ S, z1 ∈ V ∪ {X}, z2 ∈ V ∪ {Y }},

S ∈ {I, D}.
In fact, any rule having an empty left (resp. right) context is replaced by

card(V )+ 1 rules, where the left (resp. right) context is a symbol from V ∪{X}
(resp. V ∪ {Y }). Any axiom w ∈ A is surrounded by X and Y (XwY ) in A2. It
is clear that if w ∈ L(ID) then the word XwY will be obtained in ID2 using
corresponding rules and starting from the corresponding axiom. Now symbols
X and Y may be erased by rules from D′

2 and we obtain that w ∈ L(ID2). It is
clear that if rules from D′

2 are used before this step, then at most same w may
be obtained. Hence L(ID) = L(ID2).

Moreover, following more general result holds.

Lemma 2. For any insertion-deletion system ID = (V, T, A, I, D) having the
size (n, m, m′; p, q, q′) it is possible to construct an insertion-deletion system



Insertion-Deletion Systems with One-Sided Contexts 209

ID2 = (V ∪ {X, Y }, T, A2, I2, D2 ∪ D′
2) having same size such that L(ID2) =

L(ID). Moreover, all rules from I2 have the form (u, α, v), where |u| = m,
|v| = m′, all rules from D2 have the form (u′, α, v′), where |u′| = q, |v′| = q′ and
D′

2 = {(ε, X, ε), (ε, Y, ε)}.

Proof. The proof is similar to the previous lemma. We replace each axiom w ∈ A
by the word X iwY j , where i = max{m, q} and j = max{m′, q′} and we construct
rules from I2 and D2 similarly to the previous lemma.

Now we prove the following theorem.

Theorem 3. INS1,2
1 DEL1,0

1 = RE.

Proof. In order to prove the theorem it is sufficient to show that for any insertion-
deletion system ID = (V, T, A, I, D) of size (1, 1, 1; 1, 1, 1) it is possible to con-
struct a system ID2 = (V2, T, A, I2, D2) of size (1, 1, 2; 1, 1, 0) that will generate
same language as ID.

From Lemma 1 it is clear that in order to show the inclusion L(ID) ⊆ L(ID2)
it is sufficient to show how a deletion rule (a, x, b) ∈ D, with a, b, x ∈ V , may be
simulated by using rules of system ID2, i.e., insertion rules of type (a′, x′, b′c′)
and deletion rules of type (a′′, y, ε), with a′, a′′, b′, c′ ∈ V2 ∪ {ε}, x′, y ∈ V2.

Consider V2 = V ∪ {Xi, D
1
i , D2

i , D
3
i | 1 ≤ i ≤ card(D)}

Let us label all rules from D by integer numbers. Consider now a rule i :
(a, x, b) ∈ D, where 1 ≤ i ≤ card(D) is the label of the rule. We introduce inser-
tion rules (x, Xi, b), (a, D1

i , xXi), (a, D2
i , D1

i Xi), (a, D3
i , D

2
i b) in I2 and deletion

rules (D1
i , x, ε), (D2

i , D1
i , ε), (D2

i , Xi, ε), (D3
i , D2

i , ε), (ε, D3
i , ε) in D2. We say that

these rules are i-related. The rule i : (a, x, b) ∈ D is simulated as follows. We
first perform two insertions:

w1axbw2 =⇒ins w1axXibw2 =⇒ins w1aD1
i xXibw2,

after that we delete x:

w1aD1
i xXibw2 =⇒del w1aD1

i Xibw2,

after that we insert D2
i :

w1aD1
i Xibw2 =⇒ins w1aD2

i D
1
i Xibw2,

and delete D1
i and Xi:

w1aD2
i D

1
i Xibw2 =⇒del w1aD2

i Xibw2 =⇒del w1aD2
i bw2.

At this moment we insert D3
i which deletes D2

i :

w1aD2
i bw2 =⇒ins w1aD3

i D2
i bw2 =⇒del w1aD3

i bw2.

Finally symbol D3
i is removed:

w1aD3
i bw2 =⇒del w1abw2.



210 A. Matveevici, Y. Rogozhin, and S. Verlan

Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we
observe that the first two insertions may happen if and only if x is surrounded
by a and b. Moreover, after the two insertions are performed, the only way to get
rid of introduced additional symbols is to perform the sequence of insertions and
deletions presented above. Indeed, the additional symbols block any insertion
different from the presented above inside the site between a and b. At their
turn, symbols a and b prevent the interaction of the above sequence with other
possible sequences of i-related rules.

The following theorem shows the trade-off between the left context of the inser-
tion and the size of the inserted string.

Theorem 4. INS0,2
2 DEL1,0

1 = RE.

Proof. We prove the theorem by simulating systems from Theorem 3. More
exactly, we show that for any insertion-deletion system ID = (V, T, A, I, D) of
size (1, 1, 2; 1, 1, 0) it is possible to construct a system ID2 = (V2, T, A, I2, D2)
of size (2, 0, 2; 1, 1, 0) that will generate same language as ID.

From Lemma 2, but also from the proof of Theorem 3, it is clear that the
inclusion L(ID) ⊆ L(ID2) will be obtained if it will be shown how an insertion
rule (a, x, bc) ∈ I, with a, b, c, x ∈ V may be simulated by using rules of system
ID2, i.e., insertion rules of type (ε, zy, b′c′) and deletion rules of type (a′, y′, ε),
with a′, b′, c′, z ∈ V2 ∪ {ε}, y, y′ ∈ V2.

Consider V2 = V ∪ {Yi | 1 ≤ i ≤ card(I)}
Let us label all rules from I by integer numbers. Consider now a rule i :

(a, x, bc) ∈ I, where 1 ≤ i ≤ card(I) is the label of the rule. We introduce an
insertion rule (ε, Yix, bc) in I2 and a deletion rule (a, Yi, ε) in D2. We say that
these rules are i-related.

We remark that since the left context is equal to zero, a rule (ε, xy, bc) may
be applied any number of times, hence the language w1(xy)+bcw2 (we can also
write it as w1(xy)∗xybcw2 or w1xy(xy)∗bcw2) may be obtained from w1bcw2.
This behavior shall be taken into account.

The rule i : (a, x, bc) is simulated as follows. We first perform an insertion:

w1abcw2 =⇒+
ins w1aYix(Yix)∗bcw2

after that we delete Yi:

w1aYix(Yix)∗bcw2 =⇒del w1ax(Yix)∗bcw2.

If only one insertion is performed during the insertion step, then we obtain
the string w1axbcw2. Hence, L(ID) ⊆ L(ID2).

In order to prove the converse inclusion we need to show that no other words
may be obtained. Indeed, the insertion rule (ε, Yix, bc) introduces a non-terminal
symbol Yi. This symbol may be erased if and only if its left neighbor is a. Hence,
symbol x is inserted between a and bc. Let us consider a repeated application
of the insertion rule. In this case symbols Yi may be eliminated only in two
cases: either x = a (in this case the inserted Yix eliminates preceding Yi), or
x = b = c (in this case all Yi are in the first position, just after a). But these



Insertion-Deletion Systems with One-Sided Contexts 211

cases represent an iterative application of the simulated rule (a, x, bc) (indeed,
if a = x or b = c = x, this rule may be applied any number of times). Hence, no
different words may be generated and L(ID2) ⊆ L(ID).

The next result decreases the size of the insertion context at the price of increas-
ing the deletion strings.

Theorem 5. INS0,1
2 DEL0,0

2 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion
systems of size (1, 1, 1; 2, 0, 0). It is known that these systems generate any re-
cursively enumerable language [10]. Consider ID = (V, T, A, I, D) to be such a
system. Now we construct system ID2 = (V2, T, A, I2, D2) of size (2, 0, 1; 2, 0, 0)
that will generate same language as ID.

Like in previous theorems we show that any rule (a, x, b) ∈ I, with a, x, b ∈ V
may be simulated by rules of system ID2, i.e., insertion rules of type (ε, a′b′, c′)
and deletion rules of type (ε, a′b′, ε), with a′, b′, c′ ∈ V2 ∪ {ε}, 0 < |a′b′| ≤ 2.

Consider V2 = V ∪ {X1
i , X2

i , X3
i , Y 2

i , Y 3
i , K1

i , K2
i | 1 ≤ i ≤ card(I)}.

Let us label all rules from I by integer numbers. Consider now a rule i :
(a, x, b) ∈ I, where 1 ≤ i ≤ card(I) is the label of the rule. We introduce the
following insertion rules in I2:

(ε, X1
i , b), (1)

(ε, X2
i Y 2

i , ε), (2)

(ε, X3
i Y 3

i , ε), (3)

(ε, aK1
i , ε), (4)

(ε, xK2
i , K1

i ), (5)

and following deletion rules in D2:

(ε, Y 2
i a, ε), (6)

(ε, X2
i X3

i , ε), (7)

(ε, K1
i Y 3

i , ε), (8)

(ε, K2
i X1

i , ε). (9)

We say that these rules are i-related.
Like in previous theorem, since the left context is equal to zero, an inser-

tion rule (ε, xy, b) may be applied any number of times, hence the language
w1(xy)+bw2 (we can also write it as w1(xy)∗xybw2 or w1xy(xy)∗bw2) may be
obtained from w1bw2.

The rule i : (a, x, b) ∈ I is simulated as follows. We first perform insertions of
X1

i and X2
i Y 2

i (in any order):

w1abw2 =⇒+
ins w1a(X1

i )+bw2 =⇒+
ins w1(X2

i Y 2
i )+a(X1

i )+bw2.



212 A. Matveevici, Y. Rogozhin, and S. Verlan

After that we insert X3
i Y 3

i and aK1
i :

w1(X2
i Y 2

i )+a(X1
i )+bw2 =⇒+

ins

w1(X2
i Y 2

i )+a((X3
i Y 3

i )+X1
i )+bw2 =⇒+

ins

w1(X2
i Y 2

i )+a((X3
i (aK1

i )+Y 3
i )+X1

i )+bw2.

At last we insert xK2
i :

w1(X2
i Y 2

i )+a((X3
i (aK1

i )+Y 3
i )+X1

i )+bw2 =⇒+
ins

w1(X2
i Y 2

i )+a((X3
i (a(xK2

i )+K1
i )+Y 3

i )+X1
i )+bw2.

We can delete Y 1
i a at this stage of computation or earlier (does not matter):

w1(X2
i Y 2

i )+a((X3
i (a(xK2

i )+K1
i )+Y 3

i )+X1
i )+bw2 =⇒del

w1(X2
i Y 2

i )∗X2
i ((X3

i (a(xK2
i )+K1

i )+Y 3
i )+X1

i )+bw2.

After that deletion rules (ε, X2
i X3

i , ε), (ε, K1
i Y 3

i , ε) and (ε, K2
i X1

i , ε) may be
applied.

w1(X2
i Y 2

i )∗X2
i ((X3

i (a(xK2
i )+K1

i )+Y 3
i )+X1

i )+bw2 =⇒del

w1(X2
i Y 2

i )∗(X3
i (a(xK2

i )+K1
i )+Y 3

i )∗(a(xK2
i )+K1

i )∗ax(X1
i )∗bw2.

If only one insertion is performed during each insertion step, then we obtain
the string w1axbw2. Hence, L(ID) ⊆ L(ID2).

Now we prove that no other words may be obtained using rules above. Indeed,
by construction, any insertion rule inserts at least one symbol from V2 \V . So, in
order to eliminate it, a corresponding deletion rule is needed. Moreover, inserted
symbols may be divided in two categories that group symbols with respect to the
deletion. In the first category we have X2

i , Y 2
i , X3

i , Y 3
i and K1

i . It is clear that if
any of these symbols is inserted into the string, then all other symbols must be
also inserted, otherwise it is not possible to eliminate them. The second group
contains symbols X1

i and K2
i . Now let us present some invariants which appear

if we want to obtain a terminal string. Suppose that there is (a, x, b) ∈ I and
w1abw2 is a word obtained on some step of a derivation in ID. We can deduce
the following.

– One of the rules 4, 2 or 3 must be applied, otherwise nothing happens.
– In order to eliminate the introduced symbols, rules 8, 6 or 7 must be applied.
– Rule 6 may be applied if only if X2

i Y 2
i is followed by symbol a: (. . . X2

i Y 2
i a . . .)

– Rule 7 may be applied if and only if symbol X3
i was preceded by the string

X2
i Y 2

i a: (. . . X2
i Y 2

i aX3
i . . . Y 3

i . . . ).
– Rule 8 may be applied if and only if symbol Y 3

i is preceded by K1
i :

(. . . X2
i Y 2

i aX3
i . . . aK1

i Y 3
i . . . ).



Insertion-Deletion Systems with One-Sided Contexts 213

Hence, once one of above rules is applied, all other insertion and deletion
rules above must be also applied, otherwise some non-terminal symbols are not
eliminated. We also remark that if at this moment the three deletion rules 6, 7
and 8 are performed, then string w1abw2 is obtained, i.e., no change was made
with respect to the initial string (one a was deleted together with Y 2

i , but at
the same time inserted together with K1

i ). To conclude, any of insertions 4, 2
or 3 introduces at least one non-terminal symbol, and in order to eliminate it a
specific sequence of above rules shall be used. Moreover, this sequence does not
make any changes to the string. In a more general case, it was proved in [13]
that any sequence of context-free insertions and deletions of length at most 2
contributes to at most two symbols of the final terminal word. In our case, the
sequence inserts only one terminal a but it also needs to delete an a in order to
eliminate all non-terminals.

We are interested in the particular moment when the insertion of aK1
i is

performed. Now, rule 5 inserts the string xK2
i between a and K1

i . After that,
the above sequence of insertion and deletion rules is performed and a string
w1axK2

i bw2 is obtained. At this moment, symbol x is inserted and we also know
that it’s left neighbor is a. Symbol K2

i may be eliminated if and only if it is
adjacent to X1 which is always inserted before symbol b. Hence, after eliminating
all additional symbols we either obtain the same word (xK2

i was not inserted),
or insert x between a and b which simulates corresponding rule of ID. This
concludes the proof.

Remark 1. The above proof shows how tight is the borderline between universal-
ity and decidability. In fact, using only a small number of rules with one symbol
right context, it is possible to make the step that separates a decidable system (of
size (2, 0, 0; 2, 0, 0), see [13]) and a undecidable one (of size (2, 0, 1; 2, 0, 0)).

Now we consider the class INS1,1
1 DEL1,0

1 . We show that this class is not com-
plete. Firstly we prove the following lemma which shows that the deletion of
terminal symbols may be excluded.

Lemma 6. For any insertion-deletion system ID = (V, T, A, I, D) having the
size (1, 1, 1; 1, 1, 0) there is a system ID′ = (V ∪ V ′, T, A ∪ A′, I ∪ I ′, D′) such
that L(ID′) = L(ID). Moreover, for any rule (a, b, ε) ∈ D′ it holds b �∈ T .

Proof. Indeed, we can transform system ID = (V, T, A, I, D) to an equivalent
system ID′ = (V ∪ V ′, T, A ∪A′, I ∪ I ′, D′) as follows:

Any rule (S, R, ε) ∈ D, S ∈ V , R ∈ V \T will also be part of D′. Now consider
a rule (S, t, ε) ∈ D, S ∈ V , t ∈ T . Then we add the rule (S, Nt, ε) to D′, where
Nt ∈ V ′ is a new nonterminal. Moreover, we add also following rules to I ′ and
strings to A′:

– If w1tw2 ∈ A, then we add w1Ntw2 to A′, where w1, w2 ∈ V ∗,
– if (t, S, R) ∈ I, then we add (Nt, S, R) to I ′,
– if (S, R, t) ∈ I, then we add (S, R, Nt) to I ′ and
– if (S, t, R) ∈ I, then we add (S, Nt, R) to I ′, and analogously
– if (t, S, ε) ∈ D, then we add (Nt, S, ε) to D′.



214 A. Matveevici, Y. Rogozhin, and S. Verlan

It is clear that L(ID′) = L(ID) because there is no difference between erasing
t or Nt.

The following result shows that the class INS1,1
1 DEL1,0

1 is not computationally
complete.

Theorem 7. CF \ INS1,1
1 DEL1,0

1 �= ∅.

Proof. Consider the context-free language L = {aibi | i > 0}. We claim that
there is no insertion-deletion system Γ of size (1,1,1;1,1,0) such that L(Γ ) = L.

We shall prove the above statement by contradiction. Suppose there is such
system Γ = (V, {a, b}, A, I, D) and L(Γ ) = L. From lemma 6 we can suppose
that Γ does not delete terminal symbols.

Consider a sentential form of system Γ . It is clear that after a finite number
of steps it will have the form αawbβ, where α, β ∈ V ∗ and w ∈ {V \ {a, b}}∗,
because at some moment a and b should be inserted.

Let us denote the rightmost symbol a by a and the leftmost symbol b by b.
Hence any word will have the form αawbβ. Since there are no terminal dele-
tion rules, this terminal symbol a cannot be deleted and it may participate in
computation only in the left or right part of insertion rules: (a, S, R) or (S, R, a)
and in the left part of deletion rules (a, S, ε). It is clear that any insertion of a
at the left of a (in α) cannot be correlated with an insertion of b at the right
of a because the insertion uses one symbol context and a will be the left and
correspondingly right context for both insertions. The same reasoning works for
b. Hence, there must be no insertions of a in α and of b in β, otherwise a word
aibj , i �= j might be obtained. This means that all insertions of symbols a and
b must happen inside the word w, i.e., between a and b. We may also assume
that α = ak−1 and β = bm−1.

Consider now some terminal derivation (we suppose that there is a rule
(Ns, a, M1) in I):

ν ⇒+ ak−1aN1 . . .NsM1 . . . Mtbb
m−1 (10)

⇒ins akN1 . . . NsaM1 . . . Mtbb
m−1 ⇒+ aibi, (11)

where ν ∈ A is an axiom, and all Np, Mq, 1 ≤ p ≤ s, 1 ≤ q ≤ t are nonterminal
symbols and i > 1. We also remark that after inserting an a between Ns and
M1 it becomes the rightmost a and it is underlined.

From the discussion above it is clear that we cannot insert symbol a in the
word N1 . . . Ns and this word must be deleted. Moreover, because we have only
left-context deletion, the deletion of N1 . . . Ns does not depend on symbol a.
Hence we obtain:

akN1 . . .Ns =⇒+
del ak (12)



Insertion-Deletion Systems with One-Sided Contexts 215

Now consider again line (11):

⇒ins akN1 . . .NsaM1 . . . Mtbb
m−1 ⇒+

del akaM1 . . .Mtb
m

⇒+ aibi = aai−1bi (13)

Thus, from (13) we conclude, that

akM1 . . . Mtb
m ⇒+ ai−1bi (14)

On the other hand from lines (10), (12) and (14) we get:

ν ⇒+ akN1 . . . NsM1 . . .Mtb
m ⇒+

del akM1 . . .Mtb
m ⇒+ ai−1bi.

This is a contradiction that proves the theorem.

As a corollary of the above theorems we have the symmetric variant of the
results.

Corollary 8. INS2,1
1 DEL0,1

1 = INS2,0
2 DEL0,1

1 = INS1,0
2 DEL0,0

2 = RE.

4 Complexity Measures

We collect in table below known results on insertion-deletion systems. We indi-
cate both traditional measures and measures proposed in [13].

Nb. γ (n, m; p, q) family references ψ (n, m, m′; p, q, q′)
1 6 (3, 0; 3, 0) RE [7] 6 (3, 0, 0; 3, 0, 0)
2 5 (1, 2; 1, 1) RE [4,10] 8 (1, 2, 2; 1, 1, 1)
3 5 (1, 2; 2, 0) RE [4,10] 7 (1, 2, 2; 2, 0, 0)
4 5 (2, 1; 2, 0) RE [4,10] 6 (2, 1, 1; 2, 0, 0)
5 5 (1, 1; 1, 2) RE [12] 8 (1, 1, 1; 1, 2, 2)
6 5 (2, 1; 1, 1) RE [12] 7 (2, 1, 1; 1, 1, 1)
7 5 (2, 0; 3, 0) RE [7] 5 (2, 0, 0; 3, 0, 0)
8 5 (3, 0; 2, 0) RE [7] 5 (3, 0, 0; 2, 0, 0)
9 4 (1, 1; 2, 0) RE [10] 5 (1, 1, 1; 2, 0, 0)
10 4 (1, 1; 1, 1) RE [12] 6 (1, 1, 1; 1, 1, 1)
11 4 (2, 0; 2, 0) � CF [13] 4 (2, 0, 0; 2, 0, 0)
12 m + 1 (m, 0; 1, 0) � CF [13] − (m, 0, 0; 1, 0, 0)
13 p + 1 (1, 0; p, 0) � REG [13] − (1, 0, 0; p, 0, 0)
14 5 (1, 2; 1, 1) RE Theorem 3 6 (1, 1, 2; 1, 1, 0)
15 6 (2, 2; 1, 1) RE Theorem 4 6 (2, 0, 2; 1, 1, 0)
16 5 (2, 1; 2, 0) RE Theorem 5 5 (2, 0, 1; 2, 0, 0)
17 4 (1, 1; 1, 1) � RE Theorem 7 5 (1, 1, 1; 1, 1, 0)

In this table we do not present the symmetrical variants of 14, 15 and 16
which also generate all recursively enumerable languages.

We remark that the value of ψ describes in some sense the amount of coop-
eration between symbols in the system.



216 A. Matveevici, Y. Rogozhin, and S. Verlan

5 Conclusions

In this article we investigated insertion-deletion systems having a one-sided con-
text, in particular, systems with minimal deletion. We showed that systems of
size (1, 1, 2; 1, 1, 0) and (2, 0, 2; 1, 1, 0) generate all recursively enumerable lan-
guages, while systems of size (1, 1, 1; 1, 1, 0) are not computationally complete
and that they cannot generate the language {aibi | i ≥ 0}. We also considered
systems with a minimal context-free deletion and we showed that systems of size
(2, 0, 1; 2, 0, 0) also generate all recursively enumerable languages.

Moreover, the proof of the above results is based on different ideas with respect
to the proofs found in the literature. More precisely, previously such proofs were
based on a simulation of the behavior of an arbitrary Chomsky grammar, while
our proof simulates other classes of insertion-deletion systems. We think that our
approach is simpler, in particular, it permits to obtain in a easy way equivalences
between insertion-deletion systems from lines 1 to 10 from the table 4.

Acknowledgments

The authors would like to thank A. Alhazov for their helpful discussions. The
second author acknowledge the project 06.411.03.04P from the Supreme Coun-
cil for Science and Technological Development of the Academy of Sciences of
Moldova and the project MolCIP, MIF1-CT-2006-021666 from the European
Commission.

References

1. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/dele-
tions with applications to biomolecular computation. In: Proc. of 6th Int. Symp.
on String Processing and Information Retrieval, SPIRE’99, Cancun, Mexico, pp.
47–54 (1999)

2. Galiukschov, B.S.: Semicontextual grammars, Matematika Logica i Matematika
Linguistika (in Russian), Tallin University, pp. 38–50 (1981)

3. Kari, L.: On insertion and deletion in formal languages, PhD Thesis, University of
Turku (1991)

4. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing
and formal languages: characterizing RE using insertion-deletion systems. In: Pro-
ceedings of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp.
318–333 (1997)

5. Kari, L., Thierrin, G.: Contextual insertion/deletion and computability. Informa-
tion and Computation 131(1), 47–61 (1996)

6. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534
(1969)

7. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoretical Computer Science 330, 339–348 (2005)

8. Martin-Vide, C., Păun, G., Salomaa, A.: Characterizations of recursively enu-
merable languages by means of insertion grammars. Theoretical Computer Sci-
ence 205(1-2), 195–205 (1998)



Insertion-Deletion Systems with One-Sided Contexts 217

9. Păun, G.: Marcus contextual grammars. Kluwer, Dordrecht (1997)
10. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Para-

digms. Springer, Berlin (1998)
11. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,

Berlin (1997)
12. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion

systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp.
269–280. Springer, Heidelberg (2003)

13. Verlan, S.: On minimal context-free insertion-deletion systems. In: Mereghetti, C.,
Palano, B., Pighizzini, G., Wotschke, D. (eds.) Seventh International Workshop on
Descriptional Complexity of Formal Systems, Como, Italy, June 30 - July 2, 2005,
pp. 285–292 (2005) (Technical repport no. 06-05, University of Milan)



Accepting Networks of Splicing Processors with

Filtered Connections

Juan Castellanos1, Florin Manea2, Luis Fernando de Mingo López3,
and Victor Mitrana2,4

1 Department of Artificial Intelligence, Polytechnical University of Madrid
28660 Boadilla del Monte, Madrid, Spain

jcastellanos@fi.upm.es
2 Faculty of Mathematics and Computer Science, University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania
flmanea@gmail.com

3 Dept. Organización y Estructura de la Información
Escuela Universitaria de Informática, Universidad Politécnica de Madrid

Crta. de Valencia km. 7 - 28031 Madrid, Spain
lfmingo@eui.upm.es

4 Research Group in Mathematical Linguistics, Rovira i Virgili University
Pça. Imperial Tarraco 1, 43005, Tarragona, Spain

mitrana@fmi.unibuc.ro

Abstract. In this paper we simplify accepting networks of splicing
processors considered in [8] by moving the filters from the nodes to the
edges. Each edge is viewed as a two-way channel such that input and out-
put filters coincide. Thus, the possibility of controlling the computation in
such networks seems to be diminished. In spite of this and of the fact that
splicing alone is not a very powerful operation these networks are still com-
putationally complete. As a consequence, we propose characterizations of
two complexity classes, namely NP and PSPACE, in terms of accepting
networks of restricted splicing processors with filtered connections.

1 Introduction

The origin of networks of evolutionary processors (NEP for short) is a basic archi-
tecture for parallel and distributed symbolic processing, related to the Connec-
tion Machine [6] as well as the Logic Flow paradigm [3], which consists of several
processors, each of them being placed in a node of a virtual complete graph, which
are able to handle data associated with the respective node. All the nodes send si-
multaneously their data and the receiving nodes handle also simultaneously all
the arriving messages, according to some strategies, see, e.g., [4,6].

In a series of papers (see [10] for a survey) one considers that each node may
be viewed as a cell having genetic information encoded in DNA sequences which
may evolve by local evolutionary events, that is point mutations. Each node is
specialized just for one of these evolutionary operations. Furthermore, the data
in each node is organized in the form of multisets of words (each word appears

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 218–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Accepting Networks of Splicing Processors with Filtered Connections 219

in an arbitrarily large number of copies), and all the copies are processed in
parallel such that all the possible events that can take place do actually take
place. Obviously, the computational process just described is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we
have considered might be interpreted as mutations and the filtering process
might be viewed as a selection process. Recombination is missing but it was
asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [14].

In [8] one replaces the point mutations associated with each node by the miss-
ing operation mentioned above, that of splicing. This new processor is called
splicing processor. This computing model, called accepting network of splicing
processors (shortly ANSP), is similar to some extent to the test tube distributed
systems based on splicing introduced in [1] and further explored in [12]. However,
there are several differences: first, the model proposed in [1] is a language gener-
ating mechanism while ours is an accepting one; second, we use a single splicing
step, while every splicing step in [1] is actually an infinite process consisting of
iterated splicing steps; third, each splicing step in our model is reflexive; fourth,
the filters of our model are based on random context conditions while those con-
sidered in [1] are based on membership conditions; fifth, at every splicing step
a set of auxiliary words, always the same and proper to every node, is avail-
able for splicing. We want to stress from the very beginning that the splicing
processor we discuss here is a mathematical object only and the biological hints
presented above are intended to explain in an informal way how some biological
phenomena are sources of inspiration for our mathematical computing model.
Furthermore, in the case of restricted splicing processor splicing always apply
to a string existing in the node and an axiom which is rather far from DNA
biochemistry but mathematically attractive.

In [8] one presents a characterization of the complexity class NP based on
accepting networks of restricted splicing processors and discusses how restricted
ANSPs can be considered as problem solvers. In [9], one shows that every re-
cursively enumerable language can be accepted by an ANSP of size 7. It has 6
fixed nodes which do not depend on the given language and one node only, the
input one, which depends on the given language. In the same work one presents
a method for constructing, given an NP-language, an ANSP of size 7 accepting
that language in polynomial time. Unlike the previous case, all nodes of this
ANSP depend on the given language. These results hold for both variants (re-
stricted or not) of ANSP. A considerable improvement is reported in [7] where
the size is reduced to 3.

It is clear that filters associated with each node allow a strong control of the
computation. Indeed, every node has an input and output filter; two nodes can
exchange data if it passes the output filter of the sender and the input filter
of the receiver. Moreover, if some data is sent out by some node and not able
to enter any node, then it is lost. In this paper we simplify the ANSP model
considered in [8] by moving the filters from the nodes to the edges. Each edge
is viewed as a two-way channel such that the input and output filters coincide.



220 J. Castellanos et al.

Clearly, the possibility of controlling the computation in such networks seems
to be diminished. For instance, there is no possibility to loose data during the
communication steps. In spite of this and of the fact that splicing is not a power-
ful operation (remember that splicing systems generates only regular languages
[2,13]) we prove here that these devices are computationally complete. As a con-
sequence, we propose characterizations of two complexity classes, namely NP
and PSPACE, in terms of accepting networks of restricted splicing processors
with filtered connections.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called word over
V . The set of all words over V is denoted by V ∗ and the empty word is denoted
by ε. The length of a word x is denoted by |x| while alph(x) denotes the minimal
alphabet W such that x ∈ W ∗.

A nondeterministic Turing machine is a construct M = (Q, V, U, δ, q0, B, F ),
where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,
V ⊂ U , q0 is the initial state, B ∈ U\V is the “blank” symbol, F ⊆ Q is the set of
final states, and δ is the transition mapping, δ : (Q\F )×U → 2Q×(U\{B})×{R,L}.
The variant of a Turing machine we use in this paper can be described intuitively
as follows: it has a semi-infinite tape (bounded to the left) divided into cells
(each cell may store exactly one symbol from U). The machine has a central
unit storing a state from a finite set of states, and a reading/writing tape head
which scans the tape cells; the head cannot write blank symbols. The input is
a word over V stored on the tape starting with the leftmost cell while all the
other tape cells initially contain the symbol B. When M starts a computation,
the tape head scans the leftmost cell and the central unit is in the state q0. The
machine performs moves that depend on the content of the cell currently scanned
by the tape head and the current state stored in the central unit. A move consists
of: change the state, write a symbol from U on the current cell and move the
tape head one cell either to the left (provided that the cell scanned was not the
leftmost one) or to the right. An input word is accepted iff after a finite number of
moves the Turing machine enters a final state. An instantaneous description (ID
for short) of a Turing machine M as above is a word over (U \{B})∗Q(U \{B})∗.
Given an ID αqβ, this means that the tape contents is αβ followed by an infinite
number of cells containing the blank symbol B, the current state is q, and the
symbol currently scanned by the tape head is the first symbol of β provided that
β �= ε, or B, otherwise.

A splicing rule over the alphabet V is a quadruple written in the form σ =
[x, y; u, v], where x, y, u, v are words over V . Given a splicing rule σ over V as
above and a pair of words (w, z) over the same alphabet V we define the action
of σ on (w, z) by:



Accepting Networks of Splicing Processors with Filtered Connections 221

σ(w, z) =

⎧⎪⎪⎨
⎪⎪⎩

{t | w = αxyβ, z = γuvδ for some words
α, β, γ, δ ∈ V ∗ and t = αxvδ or t = γuyβ}

{w} ∪ {z}, if the set above is empty.

This action on pair of words can be naturally extended to a language L by σ(L) =⋃
w,z∈L

σ(w, z) or to a pair of languages L1, L2 by σ(L1, L2) =
⋃

w∈L1,z∈L2

σ(w, z).

Furthermore, if M is a finite set of splicing rules over V , then we set M(L) =⋃
σ∈M

σ(L) and M(L1, L2) =
⋃

σ∈M

σ(L1, L2).

For two disjoint subsets P and F of an alphabet V and a word x over V , we
define the predicates

ϕs(x; P, F ) ≡ P ⊆ alph(x) ∧ F ∩ alph(x) = ∅
ϕw(x; P, F ) ≡ alph(x) ∩ P �= ∅ ∧ F ∩ alph(x) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the former condition requires (s stands for strong)
that all permitting symbols are and no forbidding symbol is present in x, while
the latter (w stands for weak) is a weaker variant such that at least one permit-
ting symbol appears in x but still no forbidding symbol is present in x.

For every language L ⊆ V ∗ and β ∈ {s, w}, we define:

ϕβ(L, P, F ) = {x ∈ L | ϕβ(x; P, F )}.

A splicing processor over V is a pair (S, A), where:

– S is a finite set of splicing rules over V .
– A is a finite set of auxiliary words over V . These auxiliary words

are to be used by this splicing processor for splicing.

An accepting network of splicing processors with filtered connections
(ANSPFC for short) is a 9-tuple

Γ = (V, U, <, >, G,N , α, xI , xO),

where:

– V and U are the input and network alphabet, respectively, V ⊆ U , and, also,
<, >∈ U \ V are two special symbols.

– G = (XG, EG) is an undirected graph without loops with the set of nodes XG

and the set of edges EG. Each node x ∈ XG is seen as a splicing processor,
having the set of splicing rules Mx and the set of axioms Ax. Each edge is given
in the form of a binary set. G is called the underlying graph of the network.

– N : EG −→ 2U × 2U is a mapping which associates with each edge e ∈ EG

the disjoint sets N (e) = (Pe, Fe).



222 J. Castellanos et al.

– α : EG −→ {s, w} defines the filter type of an edge.
– xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . As usual, we focus here on complete
ANSPFCs, i.e., ANSPFCs having a complete underlying graph (every two nodes
are connected) denoted by Kn, where n is the number of nodes. It is worth men-
tioning that every underlying graph of a ANSPFC can be completed without
modifying the computational power; the edges that are to be added are associ-
ated with filters which make them useless. This is not possible for ANSPs.

A configuration of a ANSPFC Γ as above is a mapping C : XG −→ 2U∗

which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at a given
moment. Given a word z ∈ V ∗, the initial configuration of Γ on z is defined by
C

(z)
0 (xI) = {< z >} and C

(z)
0 (x) = ∅ for all x ∈ XG \ {xI}. Notice that the

auxiliary words do not appear in any configuration.
A configuration can change either by a splicing step or by a communication

step. When changing by a splicing step, each component C(x) of the configu-
ration C is changed in accordance with the set of splicing rules Mx associated
with the node x and the set Ax. Formally, we say that the configuration C′ is
obtained in one splicing step from the configuration C, written as C =⇒ C′, iff

C′(x) = Sx(C(x) ∪Ax) for all x ∈ XG.

Since each word present in a node, as well as each auxiliary word, appears in
an arbitrarily large number of identical copies, all possible splicings are assumed
to be done in one splicing step. If the splicing step is defined as C =⇒ C′, iff

C′(x) = Sx(C(x), Ax) for all x ∈ XG,

then all processors of Γ are called restricted.
When changing by a communication step, each node processor x ∈ XG sends

one copy of each word it has to every node processor y connected to x, provided
they can pass the filter of the edge between x and y, and receives all the words
sent by any node processor z connected with x providing that they can pass the
filter of the edge between x and z.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff

C′(x) = (C(x) \ (
⋃

{x,y}∈EG

ϕα({x,y})(C(x),N ({x, y}))))

∪(
⋃

{x,y}∈EG

ϕα({x,y})(C(y),N ({x, y})))

for all x ∈ XG.
Let Γ be an ANSPFC, the computation of Γ on the input word z ∈ V ∗ is a se-

quence of configurations C
(z)
0 , C

(z)
1 , C

(z)
2 , . . . , where C

(z)
0 is the initial configuration



Accepting Networks of Splicing Processors with Filtered Connections 223

of Γ on z, C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 � C

(z)
2i+2, for all i ≥ 0. By the previous defin-

itions, each configuration C
(z)
i is uniquely determined by the configuration C

(z)
i−1.

In other words, each computation in an ANSPFC is deterministic. A computation
halts (and it is said to be finite) if one of the following two conditions holds:

(i) There exists a configuration in which the set of words existing in the output
node xO is non-empty. In this case, the computation is said to be an accepting
computation.

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.
The language accepted by Γ is

La(Γ ) = {z ∈ V ∗ | the computation of Γ on z

is an accepting one.}

The language accepted by Γ with restricted processors is

L(r)
a (Γ ) = {z ∈ V ∗ | the computation of Γ on z

is an accepting one.}

We say that an ANSPFC Γ (with restricted processors) decides the language
L ⊆ V ∗, and write L(Γ ) = L iff La(Γ ) = L (L(r)

a (Γ ) = L) and the computation
of Γ on every z ∈ V ∗ halts.

In a similar way, we define two computational complexity measures using
ANSPFC with or without restricted processors as the computing model. To this
aim we consider an ANSPFC Γ with the input alphabet V that halts on every
input. The time complexity of the finite computation C

(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m

of Γ on x ∈ V ∗ is denoted by T imeΓ (x) and equals m. The time complexity of
Γ is the partial function from N to N,

T imeΓ (n) = max{T imeΓ (x) | x ∈ V ∗, |x| = n}.

We say that Γ decides L in time O(f(n)) if T imeΓ (n) ∈ O(f(n)).
For a function f : N −→ N we define:

TimeANSPFCp(f(n))={L |there exists an ANSPFC Γ, of size p, deciding L,
and n0 such that T imeΓ (n) ≤ f(n)∀n ≥ n0}

Moreover, we write PTimeANSPFCp =
⋃
k≥0

TimeANSPFCp(nk) for all p ≥ 1 as

well as PTimeANSPFC =
⋃
p≥1

PTimeANSPFCp .

The length complexity of the finite computation C
(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ

on x ∈ L is denoted by LengthΓ (x) and equals max
w∈C

(x)
i (z),i∈{1,...,m},z∈XG

|w|.
The length complexity of Γ is the partial function from N to N,

LengthΓ (n) = max{LengthΓ (x) | x ∈ V ∗, |x| = n}.



224 J. Castellanos et al.

For a function f : N −→ N we define

LengthANSPFCp
(f(n))={L |there exists an ANSPFC Γ, of size p, deciding L,

and n0 such that LengthΓ (n) ≤ f(n)∀n ≥ n0}

We write PLengthANSPFCp
=

⋃
k≥0

LengthANSPFCp
(nk), for all p ≥ 1, and

PLengthANSPFC =
⋃
p≥1

PLengthANSPFCp
.

The corresponding classes for ANSPFC with restricted processors are denoted
by PTime

ANSPFC
(r)
p

and PLength
ANSPFC

(r)
p

.

3 Completeness of ANSPFCs

We start this section showing that ANSPFCs with restricted processors or not
are computationally complete.

Theorem 1. For any language L, accepted (decided) by a Turing Machine M ,
there exists an ANSPFC Γ , of size 4, accepting (deciding) L. Moreover, Γ can
be constructed such that:

1. if L ∈ NTIME(f(m)) then T imeΓ (n) ∈ O(f(m)).
2. if L ∈ NSPACE(f(m)) then LengthΓ (n) ∈ O(f(m)).

Proof. Let M = (Q, V, U, R, q0, Qf , B) be a Turing machine. We construct an
ANSPFC that simulates, in parallel, all the computations of M on an input
word. In the following we assume that U \ {B} = {a1, . . . , an}.

Let Γ = (V, U ′, <′, >′, K4,N , α, xI , xO), where K4 is the complete graph with
4 nodes: {xI , xO, x1, x2}. The other parameters are defined as follows:

U ′ = V ∪ U ∪Q ∪ {<′, >′, <, >, <∗, #} ∪ {<k, >k, <k
∗, >

k
∗ | 0 ≤ k ≤ 2n}

and
xI :
• SxI is the union of the following sets:

{[<′, a; < q0, #] | a ∈ V ∪ {>′}} ∪ {[a, >′; #, B >] | a ∈ V ∪ {q0}},
(the initialization rules)

{[< q1a, b; < cq2, #] | q1, q2 ∈ Q, a, c ∈ U \ {B}, b ∈ U, (q2, c, R) ∈ δ(q1, a)} ∪
{[< q1B, b; < cq2B, #] | q1, q2 ∈ Q, c ∈ U \ {B}, b ∈ U ∪ {>, >0

∗}, (q2, c, R) ∈
δ(q1, B)},

(rules for the simulation of a move of M to the right)
{[< aq1b, d; < q2ac, #] | q1, q2 ∈ Q, a, b, c ∈ U \ {B}, d ∈ U, (q2, c, L) ∈ δ(q1, b)} ∪
{[< aq1B, d; < q2acB, #] | q1, q2 ∈ Q, a, c ∈ U \ {B}, d ∈ U ∪ {>, >0

∗}, (q2, c, L) ∈
δ(q1, B)},

(rules for the simulation of a move of M to the left)
{[<0

∗ q1a, b; < cq2, #] | q1, q2 ∈ Q, a, c ∈ U \ {B}, b ∈ U, (q2, c, R) ∈ δ(q1, a)} ∪
{[<0

∗ q1B, b; < cq2B, #] | q1, q2 ∈ Q, c ∈ U \ {B}, b ∈ U ∪ {>, >0
∗}, (q2, c, R) ∈

δ(q1, B)},



Accepting Networks of Splicing Processors with Filtered Connections 225

(rules for the simulation of a move of M to the right immediately after a
rotation to the right)
{[<0

∗ aq1b, d; < q2ac, #] | q1, q2 ∈ Q, a, b, c ∈ U \{B}, d ∈ U, (q2, c, L) ∈ δ(q1, b)}∪
{[<0

∗ aq1B, d; < q2acB, #] | q1, q2 ∈ Q, a, c ∈ U \{B}, d ∈ U∪{>, >0
∗}, (q2, c, L) ∈

δ(q1, B)},
(rules for the simulation of a move of M to the left immediately after a rotation

to the left)
{[a, >0

∗; #, >] | a ∈ U},
(rules for restoring the right marker after rotations)

{[< aiq, b; <i q, #]}| b ∈ U, q ∈ Q, 1 ≤ i ≤ n} ∪
{[b, >; #, ai >i]}| b ∈ U, 1 ≤ i ≤ n},

(rules for right rotations)
{[< q, b; <i+n aiq, #]}| b ∈ U, q ∈ Q, 1 ≤ i ≤ n} ∪
{[b, ai >; #, >i+n] | b ∈ U ∪Q, 1 ≤ i ≤ n},

(rules for left rotations)
• AxI = {< q0#, #B >} ∪ {< cq#, < cqB# | c ∈ U \ {B}, q ∈ Q \Qf} ∪

{qac#, qacB# | a, c ∈ U \ {B}, q ∈ Q \ Qf} ∪ {<i q#, <i+n aiq#, #ai >i

, # >i+n| q ∈ Q \Qf , 1 ≤ i ≤ n},

x1:
• Sx1 = {[<k, a; <k−1

∗ , #] | 0 < k ≤ 2n, a ∈ U ∪ Q}∪{[<0
∗, a; <∗, #] | a ∈

U ∪Q},
• Ax1 = {<k

∗ # | 0 ≤ k ≤ 2n− 1} ∪ {<∗ #},

x2:
• Sx2 = {[a, >k; #, >k−1

∗ ] | 0 < k ≤ 2n, a ∈ U}∪{[a, >k
∗; #, >k−1

∗ ] | a ∈ U, 0 <
k ≤ 2n− 1},
• Ax2 = {# >k

∗ | 0 ≤ k ≤ 2n− 1},

xO:
• SxO = AxO = ∅.

The filters placed on the edges of Γ are defined as follows:

– N ({x1, x2}) = (U, {<′, >′, <, >, <∗, #}),
α({xI , x1}) = (w)

– N ({x1, x2}) = (U, {#, <∗, >0
∗}),

α({x1, x2}) = (w)
– N ({x2, xI}) = ({<0

∗, >
0
∗}, ∅),

α({x1, x2}) = (s)
– N ({xI , xO}) = (Qf , ∅),

α({x2, xO}) = (w)
– For any other edge e of the underlying graph of Γ not listed above we have
N (e) = (∅, U ′) and α(e) = (s).

In the following we prove that Γ accepts (decides) the same language that M
accepts (decides), namely L.



226 J. Castellanos et al.

Assume that <′ w >′ is the input word of Γ , for some w ∈ L. The computation
of Γ on this word is divided into three major phases:

# Initialization phase: In the node xI , the string <′ w >′ is transformed into
< q0wB > after two splicing steps; nothing is communicated in between the two
splicing steps.
# Simulation phase: At the beginning of each step of this phase the node xI

contains a string having one of the following forms:
1. < qw1Bw2 >, where w1, w2 ∈ (U \ {B})∗, q ∈ Q, and w2qw1 is a configura-

tion of M ,
2. < cqw1Bw2 >, where w1, w2 ∈ (U \ {B})∗, q ∈ Q, c ∈ U \ {B}, and w2cqw1

is a configuration of M ,
3. <0

∗ qw1Bw2 >0
∗, where w1, w2 ∈ (U \ {B})∗, q ∈ Q, and w2qw1 is a configu-

ration of M , and
4. <0

∗ cqw1Bw2 >0
∗, where w1, w2 ∈ (U \{B})∗, q ∈ Q, c ∈ U \{B}, and w2cqw1

is a configuration of M .

We analyze these cases:

1. xI contains the string < qw1Bw2 >, where w1, w2 ∈ (U \ {B})∗, q ∈ Q,
and w2qw1 is a configuration of M (this case holds after the Initialization
phase). If M performs a move to the right, the string is transformed, using
the rules for the simulation of a move of M to the right, into < cq′w′

1Bw2 >,
where (q′, c, R) ∈ δ(q, a), with aw′ = w1B for some a ∈ U , w′ ∈ (U \ {B})∗;
further, the second case is applied.

If the next move of M is a move to the left, a left rotation is applied to the
string < qw1Bw2 >. In order to apply such a rotation the string w2 must be
different from λ; we assume that w2 = w′

2ai for some 1 ≤ i ≤ n. The string
< qw1Bw2 > is transformed into <i+n aiqw1Bw′

2 >i+n in two splicing steps
(the intermediate string cannot be communicated), and it is communicated
to the node x1. There it becomes <i+n−1

∗ aiqw1Bw′
2 >i+n and is commu-

nicated to x2, where it is transformed into <i+n−1
∗ aiqw1Bw′

2 >i+n−1
∗ . The

string is communicated back and forth between x1 and x2 until it becomes
<0

∗ aiqw1Bw′
2 >0

∗, and enters xI ; further, the fourth case is applied. If q is
final, the string enters xO, and the computation halts.

2. xI contains the string < cqw1Bw2 >, where w1, w2 ∈ (U \ {B})∗, q ∈ Q,
c ∈ U \ {B}, and w2cqw1 is a configuration of M . If M performs a move
to the left, the string is transformed, using the rules for the simulation of a
move of M to the left, into < q′cbw′

1Bw2 >, where (q′, b, L) ∈ δ(q, a), with
aw′ = w1B, w′ ∈ (U \ {B})∗; further, the first case is applied.

If the next move of M is a move to the right, a right rotation should
be applied to the string < cqw1Bw2 >. Assume that c = ai. The string
< aiqw1Bw2 > is transformed into <i qw1Bw2ai >i, and it is communi-
cated to the node x1. There it becomes <i−1

∗ qw1Bwe2ai >i and is com-
municated to x2, where it is transformed into <i−1

∗ qw1Bwai >i−1
∗ . The

string is communicated back and forth between x1 and x2 until it becomes
<0

∗ qw1Bwai >0
∗, and enters xI ; further, the third case is applied. If q is

final, the string enters xO, and the computation halts.



Accepting Networks of Splicing Processors with Filtered Connections 227

3. xI contains the string <0
∗ qw1Bw2 >0

∗, where w1, w2 ∈ (U \{B})∗ and w2qw1

is a configuration of M . In this case, either a right move of M is simulated, or
the computation on this string is blocked. If a right move of M is simulated,
we continue with the second case.

4. xI contains the string <0
∗ cqw1Bw2 >0

∗, where w1, w2 ∈ (U \ {B})∗, c ∈
U \ {B}, and w2cqw1 is a configuration of the Turing Machine M . In this
case, either a left move of M is simulated, or the computation on this string
is blocked. If a left move of M is simulated, we continue with the first case.

Note that after a rotation is performed, the computation blocks unless a move
of M is simulated.
# Acceptance phase: Since in the simulation described above we explore all the

configurations that M can reach on the input w, and w ∈ L, a string of the form
< qw1Bw2 > or < cqw1Bw2 >, with q ∈ Qf , will eventually be communicated
to xO and the input word is accepted.

Therefore, we have proved that L(M) ⊆ L(Γ ). Conversely, assume that <′

w >′ is the input word of Γ . The only strings that can be obtained from <′

w >′, be communicated in the network, be implied in further splicing steps, and
eventually reach the output node are the strings described in the three phases
above. Note that during a rotation, only the strings of the form <i x >i can be
transformed and re-enter xI or enter xO. Indeed, if a string of the form <i x >j

leaves xI , the superscripts will be decreased in the nodes x1 and x2 until one of
them becomes 0; since the other is different from 0 the string is blocked, either
in x1 (when the left superscript is 0) or in x2 (when the right superscript is 0)
and it cannot influence the computation.

Thus, L(M) = L(Γ ). Moreover, M stops on a given input w if and only if Γ
halts on <′ w >′. �

The next remarks are useful:

1. Since each move of M is simulated in one splicing step, and each rotation
requires at most 2n steps is clear that Γ makes at most O(f(|w|)) steps (both
splicing and communication), where f(|w|) is the number of steps made by M
on the input w.

2. The only strings that are circulated through the network and whose length
grow are those encoding configurations of the Turing machine M . Therefore, if
M uses f(|w|) space on the input w, then LengthΓ (|w|) ∈ O(f(|w|)).

3. The previous proof and remarks remain valid for ANSPFCs with restricted
processors.
Therefore,
Corollary 1
1. NP ⊆ PTimeANSPFC4 ∩PTime

ANSPFC
(r)
4

.
2. PSPACE ⊆ PLengthANSPFC4

∩PTime
ANSPFC

(r)
4

.

The reversal of Theorem 1 holds as well. The Church-Turing Thesis supports
this statement; however, we do not give here a formal proof. We do not know
whether the reversal of Corollary 1 holds for both variants of ANSPFCs. In the
following we show that it holds for ANSPFCs with restricted processors.



228 J. Castellanos et al.

Theorem 2. For any ANSPFC Γ with restricted processors accepting (decid-
ing) the language L, there exists a Turing machine M accepting (deciding) L.
Moreover, M can be constructed such that:

1. M works in O((T imeΓ (n))2) computational time for an input of length n,
and

2. M works in O(LengthΓ (n)) space for an input of length n.

Proof. We construct a nondeterministic Turing machine M as follows:

(1) M has a finite set of states associatedwith each node of Γ . This set is divided
into disjoint subsets such that each rule and each auxiliary word has an associated
subset of states. Each edge in the underlying graph has also a finite set of states
divided into two disjoint subsets each associated with the two filters on that edge.

(2) The input word of Γ is initially on the tape of M . First the Turing ma-
chine places this word between the two symbols <, >. Then, the Turing machine
simulates nondeterministically its itinerary through the underlying network of
Γ . Let us suppose that the contents of the tape of M is α; the Turing machine
works according to the following strategy:

(i) When M enters a state from the subset of states associated to a rule of the
node N1: [(x, y); (z, t)], it searches in α for the occurrences of the word xy. If
any such occurrence is found, and there exists an auxiliary word in the node
N1 that contains an occurrence of zt as a subword (this could be checked
by storing the state associated with the above splicing rule, and using the
states associated with the auxiliary words of the node), the splicing rule is
applied nondeterministically for any pair of such occurrences. One of the
two newly obtained words, chosen nondeterministically, becomes the word
whose evolution in the network is followed from now on, and M enters a state
associated with a filter on an edge of Γ incident with the current node. If α
does not contain any occurrence of xy, or no auxiliary word in the currently
simulated node contains zt, then M blocks the computation.

(ii) When M enters a state from the subset of states associated to a filter, it
checks whether α can pass that filter. If α cannot pass it, M continues its
computation simulating a new splicing step in the same node. If α passes
the filter, the receiving node becomes the current node.

(iii) As soon as the current node becomes the output node of Γ M halts and
accepts its input word.

It is rather plain that M accepts L. Clearly, if Γ decides L, the same does M .
The following complexity related observations can be made. If Γ needs at most
f(n) steps to accept/reject any word of length n, than the Turing machine M
needs at most O(f2(n)) steps to accept/reject the same word. This is due to the
fact that in the simulation of each of the f(n) steps of the computation of Γ ,
M needs to perform subword matchings in the word on its tape and to replace
a part of the word on its tape with another word; in both cases the number of
steps needed to perform these operations is O(f(n)). Also, if Γ produces words
of length at most f(n) during a computation on a word of length n, then the
Turing machine M will have words of length at most f(n) on its tape. �



Accepting Networks of Splicing Processors with Filtered Connections 229

A direct consequences of the two theorems presented in this section is:

Theorem 3
1. NP = PTime

ANSPFC
(r)
4

.
2. PSPACE = PLength

ANSPFC
(r)
4

.

Clearly, given an ANSPFC Γ with restricted processors one can construct an
ANSPFC Γ ′ accepting (deciding) the same language as Γ accepts (decides) and
vice versa. Furthermore, if Γ works in polynomial time (space), then Γ ′ works
in polynomial time (space). Does this remain true for the converse construction?
If the answer is negative, then there are NP-languages that can be decided by
ANSPFCs in polynomial time. In our view, this question left open here seems quite
attractive.

References

1. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splic-
ing. Computers and AI 15, 211–232 (1996)

2. Culik, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Appl.
Math. 31, 261–277 (1991)

3. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In:
Artificial Intelligence and Information-Control Systems of Robots ’94, pp. 31–40.
World Scientific, Singapore (1994)

4. Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI:
NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on
AI, pp. 109–113. William Kaufman, Los Altos (1983)

5. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP-completeness. Freeman, San Francisco, CA (1979)

6. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)
7. Loos, R.: On accepting networks of splicing processors of size 3. In: Proc. CiE 2007

(in press, 2007)
8. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting networks of splicing processors:

complexity results. Theoretical Computer Science 371, 72–82 (2007)
9. Manea, F., Mart́ın-Vide, C., Mitrana, V.: All NP-problems can be solved in poly-

nomial time by accepting networks of splicing processors of constant size. In: Mao,
C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 47–57. Springer,
Heidelberg (2006)

10. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives. In: Molecular Computational Models: Unconventional Approaches,
pp. 78–114. Idea Group Publishing, Hershey (2005)

11. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Para-
digms. Springer, Berlin (1998)

12. Păun, G.: Distributed architectures in DNA computing based on splicing: limiting
the size of components. In: Unconventional Models of Computation, pp. 323–335.
Springer, Heidelberg (1998)

13. Pixton, D.: Regularity of splicing languages. Discrete Appl.Math. 69, 101–124 (1996)
14. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of

the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)



Hierarchical Relaxations of the Correctness

Preserving Property for Restarting Automata�

F. Mráz1, F. Otto2, and M. Plátek1

1 Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 Praha 1, Czech Republic

mraz@ksvi.ms.mff.cuni.cz,Martin.Platek@mff.cuni.cz
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. A nondeterministic restarting automaton M is said to be
(strongly) correctness preserving, if, for each cycle u 
c

M v, the word v
belongs to the complete language LC(M) accepted by M , if the word u
does. Here, in order to differentiate between nondeterministic restarting
automata that are correctness preserving and nondeterministic restart-
ing automata in general we introduce two gradual relaxations of the
correctness preserving property. These relaxations lead to an infinite two-
dimensional hierarchy of classes of languages with membership problems
that are decidable in polynomial time.

1 Introduction

The restarting automaton was introduced in [1] to model the so-called analysis
by reduction of natural languages. From a theoretical point of view the restarting
automaton can be seen as a tool that yields a very flexible generalization of ana-
lytical grammars. It introduces a basic syntactic system (an approximation to the
formalization of the analysis by reduction), which contains the full information
about the input vocabulary (set of wordforms), the categorial vocabulary, the
set of reductions (rewritings), the recognized language (the input language), and
the language of sentential forms (the complete language).

To each sentence of the language recognized, a restarting automaton asso-
ciates all the corresponding derivations through sequences of reduction steps.
These reduction steps preserve the so-called ‘error preserving property’ for the
sentential forms derived. This is an important property that imitates a similar
property of analytical grammars. It states that any cycle of any computation of
a restarting automaton M that starts from a word not belonging to the complete
language LC(M) accepted by M necessarily yields a word that does not belong
� F. Mráz and M. Plátek were partially supported by the program ‘Information Soci-

ety’ under project 1ET100300517. F. Mráz was also partially supported by the Grant
Agency of Charles University in Prague under Grant-No. 358/2006/A-INF/MFF.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 230–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Hierarchical Relaxations of the Correctness Preserving Property 231

to this language, either. On the other hand, it is only deterministic restarting
automata that in general also satisfy the complementary property of being cor-
rectness preserving, which states that any cycle of M that starts from a word
belonging to the language LC(M) will again give a word from that language. A
nondeterministic restarting automaton is called strongly correctness preserving
if it satisfies the correctness preserving property.

By extending a corresponding result for simple t-RL-automata from [3],
Messerschmidt and Otto [4] have shown that for many types of restarting auto-
mata, the nondeterministic variant that is strongly correctness preserving is not
more powerful than the corresponding deterministic variant. In addition, they
have investigated the error-detection distance of nondeterministic restarting au-
tomata. If M is a nondeterministic restarting automaton that is not correctness
preserving, then M will execute cycles of the form u �c

M v, where u ∈ LC(M)
and v �∈ LC(M), that is, M makes a mistake. If M detects that it has made a
mistake after executing at most i − 1 further cycles starting from q0cv$, then
we say that M has error-detection distance i. One might expect that based
on the error-detection distance an infinite hierarchy of restarting automata and
language classes is obtained. However, it is shown in [4] that nondeterministic
R(W)(W)- or RL(W)(W)-automata of bounded error-detection distance are not
more expressive than the corresponding deterministic types of restarting auto-
mata. Thus, it is the unbounded error-detection distance in combination with
nondeterminism that makes nondeterministic restarting automata more expres-
sive than the corresponding deterministic variants.

As the correctness preserving property, which is very desirable in linguistic
applications of restarting automata, is too restrictive in practice, we introduce
two gradual relaxations of this property. Based on these relaxations we will
derive an infinite two-dimensional hierarchy of classes of restarting automata
and of languages that are tractable. It is expected that the notions studied here
will support a further development of the well-known ‘Functional (Generative)
Description (of Czech)’ (see [2] and some previous work of P. Sgall).

The paper is structured as follows. After giving the basic definitions in Sec-
tion 2 we define the notion of cyclic relaxation of degree i and the notion of error
relaxation of degree j for restarting automata in Section 3. Then we prove that
the membership problem for the (complete) language of an RLWW-automaton
with bounded cyclic relaxation and bounded error relaxation is decidable in
quadratic time. Finally we establish the announced infinite two-dimensional hi-
erarchy of language classes based on the degree of cyclic relaxation and the
degree of error relaxation.

2 Definitions and Notation

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [6,7].

A two-way restarting automaton, RLWW-automaton for short, is a nonde-
terministic machine M = (Q, Σ, Γ, c, $, q0, k, δ) with a finite-state control Q, a



232 F. Mráz, F. Otto, and M. Plátek

flexible tape, and a read/write window of a fixed size k ≥ 1. The work space is
limited by the left sentinel c and the right sentinel $, which cannot be removed
from the tape. In addition to the input alphabet Σ, the tape alphabet Γ of M
may contain a finite number of so-called auxiliary symbols. The behaviour of M
is described by the transition relation δ that associates a finite set of transition
steps to each pair (q, u) consisting of a state q and a possible content u of the
read/write window. There are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one
position to the right and to change the state.

2. A move-left step (MVL) causes M to shift the read/write window one position
to the left and to change the state.

3. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby shortening the tape, and to change the state.

4. A restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel c, and to reenter
the initial state q0.

5. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M
rejects in this situation. Further, it is required that, ignoring move operations,
rewrite and restart steps alternate in each computation of M , with a rewrite step
coming first. In general, the automaton M is nondeterministic, that is, there can
be two or more instructions with the same left-hand side (q, u). If that is not the
case, the automaton is deterministic.

A configuration of M is a string αqβ where q is a state, and either α = λ
(the empty string) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here
q represents the current state, αβ is the current content of the tape, and it is
understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where q0 is the initial
state and w ∈ Γ ∗.

We observe that any finite computation of a two-way restarting automaton M
consists of certain phases. A phase, called a cycle, starts in a restarting configu-
ration, the window moves along the tape performing MVR and MVL operations
and a single rewrite operation until a restart operation is performed and thus a
new restarting configuration is reached. The part after the last restart operation
is called a tail. By u �c

M v we denote a cycle of M that transforms the restarting
configuration q0cu$ into the restarting configuration q0cv$. By �c∗

M we denote
the reflexive and transitive closure of �c

M .
A word w ∈ Γ ∗ is accepted by M , if there is a computation which, starting with

the restarting configuration q0cw$, finishes by executing an accept instruction.
By LC(M) we denote the language consisting of all words accepted by M ; this is
the complete language accepted (or recognized) by M . When we restrict attention
to input words only, then we obtain the language L(M) = LC(M) ∩Σ∗, which
is the input language recognized (accepted) by L(M).

We are also interested in various restricted types of restarting automata. They
are obtained by combining two types of restrictions:



Hierarchical Relaxations of the Correctness Preserving Property 233

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RL- denotes no restriction, RR- means that no
MVL operations are available, R- means that no MVL operations are available
and that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), -λ means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if
(q′, v) ∈ δ(q, u), then v is obtained from u by deleting some symbols).

The following properties are of central importance (see, e.g, [1]).

Definition 1. (Correctness Preserving Property)
An RLWW-automaton M is (strongly) correctness preserving if u ∈ LC(M) and
u �c∗

M v imply that v ∈ LC(M).

Definition 2. (Error Preserving Property)
An RLWW-automaton M is error preserving if u �∈ LC(M) and u �c∗

M v imply
that v �∈ LC(M).

It is rather obvious that each RLWW-automaton is error preserving, and that all
deterministic RLWW-automata are correctness preserving. On the other hand,
one can easily construct examples of nondeterministic RLWW-automata that are
not correctness preserving.

For an RWW-automaton M , the relation �c
M can be described transparently

by a finite sequence of meta-instructions of the form (E, u → v), where E is a
regular language, and u → v is a rewrite step of M (see, e.g., [7]). On trying to
execute the meta-instruction (E, u → v), M will get stuck (and so reject) starting
from the configuration q0cw$, if w does not admit a factorization of the form
w = w1uw2 such that cw1 ∈ E. On the other hand, if w does have factorizations
of this form, then one such factorization is chosen nondeterministically, and
q0cw$ is transformed into q0cw1vw2$. In order to describe the tails of accepting
computations we use meta-instructions of the form (c ·E · $, Accept), where the
strings from the regular language E are accepted by M in tail computations.

Example 1. Let L1 := { anbnc, ancbnc | n ≥ 0 } ∪ { anbmd, andbmd | m > 2n ≥
0 }. Then L1 is accepted by the RW-automaton M1 that is given through the
following sequence of meta-instructions:

(1.) (c · a+, abb → cb), (4.) (c · a+, adbbb → db),
(2.) (c · a+, abbb → db), (5.) (c · {λ, ab, c, acb} · c · $, Accept),
(3.) (c · a+, acbb → cb), (6.) (c · {λ, abb, d, adbb} · b+ · d · $, Accept).

Starting from the configuration q0canbnc$ for a sufficiently large value ofn, M1 can
execute the cycle anbnc �c

M1
an−1dbn−2c. As anbnc ∈ L1, while an−1dbn−2c �∈ L1,

we see that M1 is not correctness preserving.

Theorem 1. [4] For any X ∈ {R, RL, RW, RLW, RWW, RLWW}, if M is a cor-
rectness preserving X-automaton, then there exists a deterministic X-automaton
M ′ satisfying LC(M ′) = LC(M) and L(M ′) = L(M).



234 F. Mráz, F. Otto, and M. Plátek

3 Relaxations of the Correctness Preserving Property

Here we introduce two notions that relax the strong requirements of the correct-
ness preserving property.

Definition 3. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RLWW-automaton.

(a) We say that M is correctness preserving on a word w ∈ LC(M), if, for all
z ∈ Γ ∗, w �c∗

M z implies that z ∈ LC(M), too.
(b) Let i be a non-negative integer. We say that M has cyclic relaxation of

degree i, if, for all words w ∈ LC(M), all m ≥ i, and all sequences of cycles
of the form w = w0 �c

M w1 �c
M · · · �c

M wm, wm ∈ LC(M) implies that M
is correctness preserving on wj for all j ≥ i. That is, M can only make a
mistake in the first i− 1 cycles of a (non-accepting) computation.

Obviously, the property of being correctness preserving corresponds to cyclic
relaxation of degree 0.

Definition 4. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RLWW-automaton, and let
j be a non-negative integer. M is said to have error relaxation of degree j, if
m ≤ j holds, whenever w ∈ LC(M) and there are cycles (reductions) w �c

M wi,
1 ≤ i ≤ m, such that w1, . . . , wm �∈ LC(M) and wk �= wl for all 1 ≤ k < l ≤ m.
That is, for the first cycle on a word from LC(M), there are at most j different
mistakes that M can possibly make.

Obviously, the property of being correctness preserving corresponds to error
relaxation of degree 0.

Notation. By c(i)-RLWW we denote the class of RLWW-automata with cyclic
relaxation of degree i, by e(j)-RLWW we denote the class of RLWW-automata
with error relaxation of degree j, and by ce(i, j)-RLWW we denote the class of
RLWW-automata that simultaneously have cyclic relaxation of degree i and er-
ror relaxation of degree j. The corresponding classes of complete languages are
denoted by LC(c(i)-RLWW), LC(e(j)-RLWW), and LC(ce(i, j)-RLWW), respec-
tively. Similarly, the corresponding classes of input languages are denoted by
L(c(i)-RLWW), L(e(j)-RLWW), and L(ce(i, j)-RLWW), respectively.

Example 2. Let Lp1 := {wwR, wcwR | w ∈ {a, b}∗ }. This language is accepted
by the RRW-automaton Mp1 that is given through the following sequence of
meta-instructions (see, e.g., [7]), where x ∈ {a, b}:

(1) (c · {a, b}∗, xx → c, {a, b}∗ · $), (3) (c · {λ, c} · $, Accept).
(2) (c · {a, b}∗, xcx → c, {a, b}∗ · $),

Obviously, Mp1 is correctness preserving on all words from the sublanguage
{wcwR | w ∈ {a, b}∗ }. Further, for any w ∈ {a, b}+, the only accepting
computation of Mp1 that begins with the restarting configuration q0cwwR$ is
wwR �c

Mp1
w1cw

R
1 �c∗

Mp1
c, where w = w1a or w = w1b. Thus, Mp1 has cyclic

relaxation of degree 1.



Hierarchical Relaxations of the Correctness Preserving Property 235

However, Mp1 does not have error relaxation of bounded degree. Consider the
word wm := (aabb)ma, where m is sufficiently large. Then

wmwR
m = (aabb)maa(bbaa)m = (aabb)2maa

belongs to the language Lp1. However, starting from the restarting configuration
q0cwmwR

m$, Mp1 has 4m+1 options to apply meta-instruction (1), that is, there
are 4m + 1 possible cycles wmwR

m �c
Mp1

y, but only one of them yields a word
from the language LC(Mp1) = Lp1.

For proving that Lp1 is not accepted by any RRW-automaton with error relax-
ation of bounded degree we will use the following modification of a pumping
lemma for restarting automata (see, e.g., [7]).

Proposition 1. For any RRWW-automaton M there exists a constant p such
that the following holds. Assume that uvw �c

M uv′w, where u = u1u2 · · ·un

for some non-empty words u1, . . . , un and a constant n > p. Then there exist
r, s ∈ N, 1 ≤ r < s ≤ p, such that

u1 · · ·ur−1(ur · · ·us−1)ius · · ·unvw �c
M u1 · · ·ur−1(ur · · ·us−1)ius · · ·unv′w

holds for all i ≥ 0, that is, ur · · ·us−1 is a ‘pumping factor’ in the above cycle.
Similarly, such a pumping factor can be found in any factorization of length
greater than p of w. Such a pumping factor can also be found in any factorization
of length greater than p of a word accepted in a tail computation.

Lemma 1. The language Lp1 is not accepted by any RRW-automaton with error
relaxation of finite degree.

Proof. Let Σ = {a, b, c}, and assume that M = (Q, Σ, Σ, c, $, q0, k, δ) is an
RRW-automaton such that L(M) = Lp1.

Let n0 > 0 be an integer. We will show that there exist a word z ∈ Lp1 and
cycles (reductions) z �c

M zi, 1 ≤ i ≤ n0, such that z1, . . . , zn0 �∈ LC(M) and
zj �= zl for all 1 ≤ j < l ≤ n0. That is, for the first cycle on some word from
L(M), there are at least n0 different mistakes that M can make.

For m ≥ 1, let Am := { (a2mb2m)na2m(b2ma2m)n | n > 0 }. Obviously, Am ⊂
Lp1. Further, the following property is easily verified:

(∗) Let uyw be a factorization of a word x ∈ Am such that |y| < m. If
there exists a word y′ satisfying |y′| < |y| such that uy′w ∈ Lp1, then
|u| > |x|/2− 2m and |w| > |x|/2 − 2m.

Let p be the constant for M from Proposition 1, and let m > max{k, p}, n > p,
and v := (a2mb2m)na2m(b2ma2m)n ∈ L(M). We consider an accepting compu-
tation of M on input v. From Proposition 1 it follows easily that v cannot be
accepted by a tail computation of M . Thus, the accepting computation consid-
ered begins with a cycle of the form v �c

M ω for some word ω ∈ Lp1. From (∗) it
follows that the corresponding rewrite operation occurs at a position in the range
[|v|/2 − 2m, |v|/2 + 2m], that is, a factor of the middle part bma2mbm is being



236 F. Mráz, F. Otto, and M. Plátek

rewritten. The word v has a factorization of the form v = α1α2 · · ·αnyβ1 · · ·βn

such that αt = a2mb2m for all t = 1, . . . , n − 1, αn = a2mbm, y = bma2mbm,
β1 = bma2m, and βt = b2ma2m for all t = 2, . . . , n. Thus, according to Proposi-
tion 1 there exist indices r, s, 1 ≤ r < s ≤ p < n such that

α1 · · ·αr−1(αr · · ·αs−1)iαs · · ·αnyβ1 · · ·βn �c
M

α1 · · ·αr−1(αr · · ·αs−1)iαs · · ·αny′β1 · · ·βn,

for some word y′ and all exponents i ≥ 0. Obviously, the length of the pumping
factor αr · · ·αs−1 divides the number 4m ·p!. Analogously a pumping factor with
corresponding properties can be found in the suffix β2 · · ·βn of v. Hence, there
exist words vi,j and ωi,j obtained by pumping the cycle v �c

M ω independently
on the left and on the right of the rewritten factor y such that

vi,j = (a2mb2m)n+ip!a2mbmybma2m(b2ma2m)n+jp!,
ωi,j = (a2mb2m)n+ip!a2mbmy′bma2m(b2ma2m)n+jp!,

and vi,j �c
M ωi,j for all i, j ∈ N. Consider the words v� := v�,n0−� and ω� :=

ω�,n0−� for � = 0, . . . , n0. Trivially,

v� = (a2mb2m)n+�p!+1a2m(b2ma2m)n+(n0−�)p!+1 = (a2mb2m)2n+n0p!+2a2m.

For any �1, �2, 0 ≤ �1 < �2 ≤ n0, ω�1 �= ω�2 , as these words arise by shortening v�

at different places. Since at most one of the words ω0, . . . , ωn0 is a palindrome,
M can make at least n0 mistakes in the first cycle on the word v� from L(M). � 

The lemma above yields the following consequence.

Theorem 2. Lp1 ∈ L(c(1)-RRW) �
⋃

j≥0 L(e(j)-RRW).

It can be shown analogously that the language

Lp2 := {wwRdw1w
R
1 , wcwRdw1w

R
1 , wcwRdw1cw

R
1 | w, w1 ∈ {a, b}∗ }

is accepted by an RRW-automaton with cyclic relaxation of degree 2, but that it
is not accepted by any RRW-automaton with cyclic relaxation of degree 1 or with
bounded error relaxation. By taking more factors we obtain the corresponding
result for any degree i of cyclic relaxation.

Our next results show that cyclic relaxation of bounded degree implies that
the languages LC(M) and L(M) are decidable in polynomial time, where the
degree of the time bound depends on the degree of cyclic relaxation.

Theorem 3. If M is a ce(i, j)-RLWW-automaton, then the membership prob-
lems for the languages LC(M) and L(M) are solvable in time O((j + 1)i · n2).

Proof. Let i, j ≥ 0, and let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RLWW-automaton
that has cyclic relaxation of degree i and error relaxation of degree j. Given a
word w ∈ Γ n, we must decide whether there exists an accepting computation of
M starting from the restarting configuration q0cw$. For doing so, we construct



Hierarchical Relaxations of the Correctness Preserving Property 237

a partial computation tree G(M, w). The nodes of this tree are labelled with
restarting configurations of M , and there is a directed edge from a node labelled
with q0cx$ to a node labelled with q0cy$ if and only if x �c

M y holds. This tree
is constructed iteratively level by level.

Level 0 consists of a single node nw that is labelled with q0cw$. If starting
from the configuration q0cw$, M can execute an accepting tail computation, then
w ∈ LC(M), and we halt and accept. Otherwise, let ν(w) denote the number
of words w′ such that M can execute a cycle of the form w �c

M w′, and let
μ(w) := min{ν(w), j + 1}. If ν(w) = 0, then starting from q0cw$, M can only
execute rejecting tail computations, implying that w �∈ LC(M). Accordingly we
halt and reject. Otherwise, we determine μ(w) many words w′ such that M can
execute a cycle w �c

M w′, and we add a node nw′ labelled by q0cw′$ and a
directed edge from the node nw to this new node for each of these words w′.
These nodes form level 1 of the tree G(M, w).

If, for any of the words w′, M can execute an accepting tail computation
starting from q0cw′$, then w ∈ LC(M), and we halt and accept. Otherwise, let
ν(w′) denote the cardinality of the number of words z such that M can execute a
cycle of the form w′ �c

M z, and let μ(w′) := min{ν(w′), j +1}. If ν(w′) = 0, then
starting from q0cw′$, M can only execute rejecting tail computations, implying
that w′ �∈ LC(M). Otherwise, we determine μ(w′) many words z such that M
can execute a cycle w′ �c

M z, and we add a node nz labelled by q0cz$ and a
directed edge from the node nw′ to this new node for each of these words z.
Doing this for all nodes at level 1, we obtain the nodes that form level 2 of the
tree G(M, w). If there are no nodes at level 2, then w �∈ LC(M), and we halt
and reject. Otherwise we continue to construct the nodes at level 3, 4, . . . , i.

Altogether we have constructed O((j+1)i) many nodes, which can be achieved
in time O((j + 1)i · n). If any of the nodes constructed is labelled by a restart-
ing configuration such that M can execute an accepting tail computation when
starting from that particular restarting configuration, then w ∈ LC(M), and
we halt and accept. On the other hand, if for all nodes at level i, M can only
execute rejecting tail computations, then w �∈ LC(M), and we halt and reject.
Finally, we simulate a single computation for each restarting configuration that
labels a node at level i, where, at each step, we first check whether an accepting
tail computation can be applied, and if that is not possible, then we execute the
next cycle, provided that is possible. If one of these computations is accepting,
then w ∈ LC(M), and we halt and accept; if all of them are rejecting, then we
halt and reject. As there are at most (j + 1)i nodes at level i, this part of the
computation takes time O((j + 1)i · n2).

It remains to argue that this algorithm always yields the correct answer. If it
accepts, then certainly w ∈ LC(M), that is, this answer is correct. Conversely,
assume that w ∈ LC(M), but that for no restarting configuration labelling a
node of the tree G(M, w), M can execute an accepting tail computation. As M
has error relaxation of degree j, we see that at least one node at level 1 is labelled
by a restarting configuration q0cw1$ such that w1 ∈ LC(M), one successor of
this node at level 2 is labelled by a restarting configuration q0cw2$ such that



238 F. Mráz, F. Otto, and M. Plátek

w2 ∈ LC(M), and so forth. Thus, following the corresponding path from the
root to the distinguished node at level i, we obtain a partial computation of the
form w �c

M w1 �c
M w2 �c

M · · · �c
M wi, where wi ∈ LC(M). As M has cyclic

relaxation of degree i, it follows that M is correctness preserving on wi. Thus,
the computation of M that starts from the restarting configuration q0cwi$ and
that is being simulated by our algorithm will eventually accept. This implies
that our algorithm will accept as well. � 

Although the proof above only mentions the complete language LC(M), it is
immediate that it also works for the language L(M). By abandoning the error
relaxation altogether we obtain the following result.

Theorem 4. If M is a c(i)-RLWW-automaton for some i ≥ 0, then the member-
ship problems for the languages LC(M) and L(M) are solvable in time O(ni+2).

Proof. For a restarting configuration q0cx$, where |x| = n, there are at most
O(n) many words y such that M can execute a cycle of the form x �c

M y. Thus,
from the proof of the previous theorem we see that we can decide membership
in LC(M) and in L(M) in time O(ni+2). � 

Next we establish some hierarchy results on the degree of cyclic relaxation.

Theorem 5. For all i, j ≥ 0, we have the following proper inclusions:
(a) LC(c(i)-RLWW) ⊂ LC(c(i + 1)-RLWW),
(b) LC(ce(i, j)-RLWW) ⊂ LC(ce(i + 1, j)-RLWW).

Proof. It remains to show that the inclusions above are proper. As we consider
complete languages, it is not necessary to distinguish between input symbols
and auxiliary symbols, that is, we can restrict our attention to RLW-automata.
Finally, as for each RLW-automaton, an RRW-automaton can be found that has
the same tape alphabet and that executes exactly the same cycles (see, e.g., [7]),
we only need to consider RRW-automata. For deriving the announced separation
results we consider a number of example languages.

Let L1,1 := { anbn, ancbn | n ≥ 1 } ∪ { anb2n, andb2n | n ≥ 1 }. It is easily seen
that this language is accepted by the RW-automaton M1,1 that is given through
the following sequence of meta-instructions:

(1) (c · a+, abb → cb), (4) (c · a+, adbbb → db),
(2) (c · a+, abbb → db), (5) (c · {ab, acb, abb, adbb} · $, Accept).
(3) (c · a+, acbb → cb),

Starting from the configuration q0canbn$ for a sufficiently large value of n, M1,1

can execute the cycle anbn �c
M1,1

an−1dbn−2. As anbn ∈ L1,1, while an−1dbn−2 �∈
L1,1, we see that M1,1 is not correctness preserving. On the other hand, it is
easily verified that M1,1 is a ce(1, 1)-RW-automaton.



Hierarchical Relaxations of the Correctness Preserving Property 239

Next consider the language L2,1 := L1,1 · L1,1. It is accepted by the RRW-
automaton M2,1 that is given through the following sequence of meta-instructions:

(1) (c · a+, ab → c, b+ · a+ · {λ, c, d} · b+ · $),
(2) (c · a+, abb → d, b+ · a+ · {λ, c, d} · b+ · $),
(3) (c · (ab ∪ a+ · c · b+ ∪ abb ∪ a+ · d · b+) · a+, ab → c, b+ · $),
(4) (c · (ab ∪ a+ · c · b+ ∪ abb ∪ a+ · d · b+) · a+, abb → d, b+ · $),
(5) (c · (ab ∪ a+ · c · b+ ∪ abb ∪ a+ · d · b+) · a+, acb → c, b+ · $),
(6) (c · (ab ∪ a+ · c · b+ ∪ abb ∪ a+ · d · b+) · a+, adbb → d, b+ · $),
(7) (c · a+, acb → c, b+ · {ab, acb, abb, adbb} · $),
(8) (c · a+, adbb → d, b+ · {ab, acb, abb, adbb} · $),
(9) (c · {ab, acb, abb, adbb} · {ab, acb, abb, adbb} · $, Accept).

Given an input of the form a2nb2na2nb2n for a sufficiently large value of n, M2,1

first inserts a c or a d after the prefix a2n−1 (by instruction (1) or (2)), and
then it inserts a c or a d in the second half of the input word (by instruction (3)
or (4)). Thereafter the computation proceeds deterministically. Hence, M2,1 has
cyclic relaxation of degree 2. Further, in the first step above as well as in the
second step it has two choices only, which implies that it has error relaxation of
degree 1. Thus, we see that L2,1 ∈ LC(ce(2, 1)-RRW).

However, L2,1 is not accepted by any c(1)-RRW-automaton. Assume that
M ′ is an RRW-automaton such that LC(M ′) = L2,1. Consider the possible
computations of M ′ starting from an input of the form w := a2mb2ma2nb2n for
some large values of m and n. As w ∈ L2,1, there exists an accepting computation
w �c

M ′ w1 �c
M ′ w2 �c

M ′ · · · �c
M ′ wk, where wk is accepted in a tail computation.

Hence, w1 ∈ L2,1, implying that in the first cycle M ′ has either modified the
syllable a2mb2m or the syllable a2nb2n, while the other syllable has remained
unchanged. Assume that M ′ has rewritten the first syllable into a2m−rcb2m−r

or into a2m−rb2m−r. Using a technique similar to the proof of Lemma 1 it can
be shown that M ′ cannot distinguish a suffix of the form a2nb2n from a suffix of
the form a2nb4n for some values of n. Hence, M ′ is not correctness preserving on
some words ending with the suffix a2nb2n. In particular, M ′ is not correctness
preserving on some words of a form similar to w1. The case that in the first cycle
M ′ modifies the syllable a2nb2n is dealt with analogously. Thus, M ′ does not have
cyclic relaxation of degree 1, that is, L2,1 ∈ LC(ce(2, 1)-RRW) �LC(c(1)-RRW).

For i ≥ 3, we can show in the same way that the language Li,1 := Li
1,1 belongs

to LC(ce(i, 1)-RRW) � LC(c(i− 1)-RRW). This shows that the inclusions in (a)
and (b) are indeed proper inclusions. � 

Corresponding hierarchy results also hold for the degree of error relaxation.

Theorem 6. For all i, j ≥ 0, we have the following proper inclusions:
(a) LC(e(j)-RLWW) ⊂ LC(e(j + 1)-RLWW),
(b) LC(ce(i, j)-RLWW) ⊂ LC(ce(i, j + 1)-RLWW).

Proof. Again it is obvious that these inclusions hold. For proving that they
are proper, we consider another family of example languages. For m > 1, let



240 F. Mráz, F. Otto, and M. Plátek

Σm := {a, b, c1, . . . , cm}, and Le1,m := { anb2in, ancib
2in | 1 ≤ i ≤ m, n ≥ 1 }.

Then Le1,m is accepted by the RRW-automaton M1,m that is specified as follows,
where 1 ≤ i ≤ m:

(1.i) (c · a+, ab2i → ci, (b2i

)+ · $),
(2.i) (c · a+, acib

2i → ci, (b2i

)+ · $),
(3.i) (c · a · {λ, ci} · b2i · $, Accept).

On words from Le1,m that contain an occurrence of a symbol ci (1 ≤ i ≤ m)
M1,m is correctness preserving. On the other hand, starting from a restarting
configuration of the form q0canb2mn$, there are m possible cycles that M1,m can
execute, but only one of them yields a word from Le1,m. Hence, M1,m has cyclic
relaxation of degree 1 and error relaxation of degree m− 1.

In fact, no RRW-automaton M for the language Le1,m has error relaxation
of degree lower than m − 1. Assume that M is an RRW-automaton for Le1,m.
Given an input of the form anb2mr ∈ Le1,m, where n is sufficiently large, M
cannot accept in a tail computation. Thus, it has to execute a cycle of the
form anb2mr �c

M an−scib
2mr−2is or anb2mr �c

M an−sb2mr−2is for some value of
i ∈ {1, . . . , m} and a small s ≥ 1.

By a technique similar to the one used in the proof of Lemma 1 we can
show that there are m possible values for i, each of which could be the correct
one, while all others are wrong. Therefore, in this situation M has at least m
options, and so it has error relaxation of degree at least m − 1. Thus, we see
that Le1,m ∈ L(ce(1, m− 1)-RWW) � L(e(m− 2)-RWW). This implies that the
inclusions in (a) and in (b) are proper. � 

From Theorem 2 and the remark following it we also obtain the following.

Corollary 1. For all i ≥ 1,
⋃

j≥0 LC(ce(i, j)-RLWW) ⊂ LC(c(i)-RLWW).

Also the corresponding result for the degree of error relaxation holds.

Theorem 7. For all j ≥ 1,
⋃

i≥0 LC(ce(i, j)-RLWW) ⊂ LC(e(j)-RLWW).

Proof. Recall the language L1,1 from the proof of Theorem 5. Here we consider
the language L+,1 := L+

1,1. Then an RRW-automaton can be designed that ac-
cepts this language, and that has error relaxation of degree 1. However, it can
be shown that no RRW-automaton with bounded cyclic relaxation can accept
the language L+,1. Thus, L+,1 ∈ L(e(1)-RRW) �

⋃
i,j≥0 L(ce(i, j)-RRW). � 

The proof above shows in fact that L+,1 �∈
⋃

i≥0 LC(c(i)-RLWW). Thus, we
obtain the following consequence.

Corollary 2.
⋃

i≥0 LC(c(i)-RLWW) ⊂ LC(RLWW).

As the language Lp1 is not accepted by any restarting automaton of bounded
degree of error relaxation, we also have the following proper inclusion.

Corollary 3.
⋃

j≥0 LC(e(j)-RLWW) ⊂ LC(RLWW).



Hierarchical Relaxations of the Correctness Preserving Property 241

4 Conclusion

We have seen that the two relaxations of the notion of correctness preservation
yield a two-dimensional infinite hierarchy of automata and language classes. This
hierarchy is depicted in the diagram below, where each arrow denotes a proper
inclusion. Here ce(i, j) stands for the language class LC(ce(i, j)-RLWW), c(i)
denotes the language class LC(c(i)-RLWW), and e(j) denotes the language class
LC(e(j)-RLWW).

ce(1, 1) ��

��

ce(2, 1) ��

��

ce(3, 1) ��

��

· · · ��
�

i≥0ce(i, 1) ��

��

e(1)

��
ce(1, 2) ��

��

ce(2, 2) ��

��

ce(3, 2) ��

��

· · · �� �
i≥0ce(i, 2) ��

��

e(2)

��
ce(1, 3) ��

��

ce(2, 3) ��

��

ce(3, 3) ��

��

· · · ��
�

i≥0ce(i, 3) ��

��

e(3)

��
· · ·

��
· · ·

��
· · ·

��
· · · · · ·

��
· · ·

���
j≥0ce(1, j)

��

�� �
j≥0ce(2, j)

��

�� �
j≥0ce(3, j)

��

�� · · · �� �
i,j≥0ce(i, j)

��

�� �
j≥0e(j)

��
c(1) �� c(2) �� c(3) �� · · · ��

�
i≥0c(i) �� LC(RLWW)

It remains open whether an analogous hierarchy can be derived for the corre-
sponding families of input languages.

References

1. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

2. Lopatkova, M., Platek, M., Sgall, P.: Towards a formal model for functional gen-
erative description - Analysis by reduction and restarting automata. The Prague
Bulletin of Mathematical Linguistics 87, 7–26 (2007)

3. Messerschmidt, H., Mráz, F., Otto, F., Plátek, M.: Correctness preservation and
complexity of simple RL-automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006.
LNCS, vol. 4094, pp. 162–172. Springer, Heidelberg (2006)

4. Messerschmidt, H., Otto, F.: On determinism versus nondeterminism for restarting
automata. In: Loos, R., Fazekas, S.Z., Martin-Vide, C. (eds.) LATA 2007, Preproc.
Report 35/07, Research Group on Math. Linguistics, Universitat Rovira i Virgili,
Tarragona, 2007, pp. 413–424 (2007)

5. Mráz, F., Plátek, M., Jurdzinski, T.: Ambiguity by restarting automata. Interna-
tional Journal of Foundations of Computer Science (to appear)

6. Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, Springer, Heidelberg (2003)

7. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006)



Four Small Universal Turing Machines

Turlough Neary1 and Damien Woods2

1 TASS, Department of Computer Science,
National University of Ireland Maynooth, Ireland

tneary@cs.may.ie
2 Department of Computer Science,

University College Cork, Ireland
d.woods@cs.ucc.ie

Abstract. We present small polynomial time universal Turing machines
with state-symbol pairs of (5, 5), (6, 4), (9, 3) and (18, 2). These machines
simulate our new variant of tag system, the bi-tag system and are the
smallest known universal Turing machines with 5, 4, 3 and 2-symbols
respectively. Our 5-symbol machine uses the same number of instructions
(22) as the smallest known universal Turing machine by Rogozhin.

1 Introduction

Shannon [16] was the first to consider the problem of finding the smallest possi-
ble universal Turing machine. In 1962 Minsky [7] constructed a 7-state, 4-symbol
universal Turing machine that simulates Turing machines via 2-tag systems [2].
Minsky’s technique of 2-tag simulation was extended by Rogozhin [15] to con-
struct small universal Turing machines with state-symbol pairs of (24, 2), (10, 3),
(7, 4), (5, 5), (4, 6), (3, 10) and (2, 18). Subsequently some of these machines were
reduced in size to give machines with state-symbol pairs of (3, 9) [5], (19, 2) [1]
and (7, 4) [1]. Figure 1 is a state-symbol plot where the current smallest 2-tag
simulators of Rogozhin et al. are plotted as circles.

Here we present universal Turing machines with state-symbol pairs of (5, 5),
(6, 4), (9, 3) and (18, 2), the later two machines having previously appeared in [9].
These machines simulate Turing machines via bi-tag systems and are plotted as
triangles in Figure 1. These machines improve the state of the art in small
universal Turing machines and reduce the space between the universal and non-
universal curves. Our 5-symbol machine uses the same number of instructions
(22) as the current smallest known universal Turing machine (Rogozhin’s 6-
symbol machine [15]). Also, our 5-symbol machine has less instructions than
Rogozhin’s 5-symbol machine. Since Minsky [7] constructed his 7-states and 4-
symbols machine, a number of authors [1,14,15] have decreased the number of
transition rules used for 4-symbol machines. However our 4-symbol machine is
the first reduction in the number of states.

Recently, the simulation overhead of Turing machines by 2-tag systems was
improved from exponential [2] to polynomial [17]. More precisely, if Z is a single

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 242–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Four Small Universal Turing Machines 243

�: our new universal machines
that simulate bi-tag systems

�� : smallest known machines that
directly simulate Turing Machines

�� : universal machines of Rogozhin et al.
that simulate 2-tag systems

universal curve

non-universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

state

symbol

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 1. Current state-symbol plot of small universal Turing machines

tape deterministic Turing machine that runs in time t, then the universal Turing
machines of Minsky and Rogozhin et al. now simulate Z in O(t8(log t)4) time.
It turns out that the time overhead can be improved to O(t4(log t)2) (this result
is as yet unpublished). In earlier work [11] we gave the smallest known universal
Turing machines that directly simulate Turing machines. These machines run in
time O(t2) and are plotted as squares in Figure 1. Assuming a single instruction
is reserved for halting it is known that there are no universal Turing machines
for the following state-symbol pairs: (2, 2) [4,12], (3, 2) [13], (2, 3) (Pavlotskaya,
unpublished), (1, n) [3], and (n, 1) (trivial) for n � 1. These results induce the
non-universal curve in Figure 1.

Our universal Turing machines simulate bi-tag systems with a quadratic poly-
nomial increase in time. Hence from Theorem 1 our universal Turing machines
simulate Turing machines efficiently in time O(t6(n)). Results on alternative
small universal Turing machine definitions can be found in [6,18,19].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have one
tape. Our universal Turing machine with m states and n symbols is denoted
Um,n. We write c1 � c2 if a configuration c2 is obtained from c1 via a single
computation step. We let c1 �t c2 denote a sequence of t computation steps and
let c1 �∗ c2 denote 0 or more computation steps. Also, we let 〈x〉 denote the
encoding of x and ε denote the empty word.



244 T. Neary and D. Woods

2 Bi-Tag Systems

The computation of a bi-tag system is similar to that of a tag system [8]. Bi-tag
systems are essentially 1-tag systems (and so they read and delete one symbol
per timestep), augmented with additional context sensitive rules that read, and
delete, two symbols per timestep.

Definition 1 (Bi-tag system). A bi-tag system is a tuple (A, E, eh, P ). Here
A and E are disjoint finite sets of symbols and eh ∈ E is the halt symbol. P is
the finite set of productions. Each production is of one of the following 3 forms:

P (a) = a, P (e, a) ∈ AE, P (e, a) ∈ AAE,

where a ∈ A, e ∈ E, and P is defined on all elements of {A∪ ((E −{eh})×A)}
and undefined on all elements of {eh} ×A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the form s = A∗(AE ∪ EA)A∗

called the dataword. In Definition 2 we let a ∈ A and e ∈ E.

Definition 2 (BTS computation step). A production is applied in one of
two ways:

(i) if s = as′ then as′ � s′P (a),
(ii) if s = eas′ then eas′ � s′P (e, a).

Theorem 1 ([10]). Given a deterministic single tape Turing machine Z that
runs in time t then there exists a bi-tag system that simulates the computation
of Z using space O(t(n)) and time O(t3(n)).

In earlier work [10] Theorem 1 is obtained by proving bi-tag systems simulate
Turing machines via clockwise Turing machines. A clockwise Turing machine
is a Turing machine with a tape head that moves in one direction only, on a
circular tape.

3 Universal Turing Machines

In this section we give the input encoding to our universal Turing machines.
Following this we give each machine and describe its operation by explaining
how it simulates bi-tag systems. Let R = (A, E, eh, P ) be a bi-tag system where
A = {a1, . . . , aq} and E = {e1, . . . , eh}. The encoding of R as a word is denoted
〈R〉. The encodings of symbols a ∈ A and e ∈ E are denoted 〈a〉 and 〈e〉 respec-
tively. The encodings of productions P (a) and P (e, a) are denoted as 〈P (a)〉 and
〈P (e, a)〉 respectively.

Definition 3. The encoding of a configuration of R is of the form

. . . ccc〈R〉S∗(〈A〉M)∗
(
〈A〉M〈E〉 ∪ 〈E〉〈A〉M

)
(〈A〉M)∗Dccc . . . (1)



Four Small Universal Turing Machines 245

Table 1. Encoding of P productions. Here ai, ak, av ∈ A and ej , em ∈ E. If em �= eh

then L = ε. If em = eh then L = g12q+8 for U6,4 and L = d10 for U5,5.

〈P (ej , ai)〉 〈P (ej, ai)〉
〈P (ai)〉 P (ej , ai) = akem P (ej , ai) = avakem

U5,5 δδd16i−6 δδLd16mqδd16k−6 δLd16mqδd16k−2δd16v−6

U6,4 δ5g12i−10δ δ4Lg12mqδδg12k−10δ δ2Lg12mqδδg12hq+12k−4δδg12v−10δ

U9,3 δδccδc8i δccδδc8mq+2δc8k δδc8mq+2δc8kδc8v

U18,2 cb(cc)2cb(cc)4i−2 (cb)2(cc)4qj+2cb(cc)4k−2 cb(cc)4qj+2cb(cc)4kcb(cc)4v−2

Table 2. Symbol values for Equations (1) and (2). The value of H for U6,4 is given
by Equation (3) in Section 3.4. There is no 〈eh〉 for U18,2 as this machine simulates
non-halting bi-tag systems.

〈ai〉 〈ej〉 〈eh〉 S M D V H

U5,5 b4i−1 b4jq b4hq+2δ d2 δ ε δ cd

U6,4 b8i−5 b8jq b8q(h+1)+5δ g2 δ b δ H

U9,3 b4i−1 b4jq b4hq c2 δ ε δcc bccbc

U18,2 (bc)4i−1 (bc)4jq (cc)2 bb (bc)2 cb cb

where 〈R〉 is given by Equation (2) and Tables 1 and 2, S is given by Table 2, and
(〈A〉M)∗

(
〈A〉M〈E〉 ∪ 〈E〉〈A〉M

)
(〈A〉M)∗D encodes R’s dataword via Table 2.

〈R〉 =H〈P (eh−1, aq)〉V 〈P (eh−1, aq−1)〉 . . . V 〈P (eh−1, a1)〉
...

V 〈P (e1, aq)〉V 〈P (e1, aq−1)〉 . . . V 〈P (e1, a1)〉
V 2〈P (aq)〉V 2〈P (aq−1)〉 . . . V 2〈P (a1)〉V 3

(2)

In Equation (1) the position of the tape head is over the symbol immediately to
the right of 〈R〉S∗. The initial state is u1 and the blank symbol is c.

3.1 Universal Turing Machine Algorithm Overview

Each of our universal Turing machines use the same basic algorithm. Here we
give a brief description of the simulation algorithm by explaining how our ma-
chines locate and simulate a production. The encoded production to be simulated
is located using a unary indexing method. The encoded production, 〈P (ai)〉 or
〈P (ej , ai)〉 in Equation (2), is indexed (pointed to) by the number of symbols
contained in the leftmost encoded symbol or pair of symbols in the encoded
dataword (Equation (1)). For illustration purposes we assume that we are using
U9,3. If the leftmost encoded symbol is 〈ai〉 = b4i−1 (Table 2) then the value
4i − 1 is used to index 〈P (ai)〉. If the leftmost encoded symbol is 〈ej〉 = b4jq ,



246 T. Neary and D. Woods

and 〈ai〉 = b4i−1 is adjacent, then the value 4jq+4i−1 is used to index 〈P (ej , ai)〉.
The number of b symbols in the encoded symbol, or pair of encoded symbols,
is equal to the number of δc∗ words between the leftmost encoded symbol and
the encoded production to be simulated. To locate this production, U9,3 simply
changes each δc∗ to δb∗, for each b in the leftmost encoded symbol or pair of
encoded symbols. This process continues until the δ that separates two encoded
symbols in the dataword is read. Note from Equation (1) that there is no δ
marker between each 〈ej〉 and the 〈ai〉 to its right, thus allowing 〈ej〉〈ai〉 to be
read together during indexing. After indexing, our machines print the indexed
production immediately to the right of the encoded dataword. After the indexed
production has been printed, then 〈R〉, the encoding of R, is restored to its
original value. This completes the simulation of the production.

3.2 U9,3

Example 1 (U9,3 simulating the execution of the production P (a1)). This exam-
ple is presented using three cycles. The tape head of U9,3 is given by an underline.
The current state of U9,3 is given to the left in bold. The dataword a1ejai is en-
coded via Equation (1) and Table 2 as bbbδb4jqb4i−1δ and P (a1) is encoded via
Table 1 as 〈P (a1)〉 = δδccδc8. From Equation (1) we get the initial configuration:

u1u1u1, . . . 〈P (a2)〉(δcc)2δδccδc8δccδccδccbbbδb4jqb4i−1δccc . . .

Table 3. Table of behaviour for U9,3

U9,3 u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu1 cLu3 cLu3 bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b cLu2 cLu2 bLu4 bLu4 bRu6 bRu7 cRu9 cRu8

δ δRu3 δLu2 δRu1 δLu4 δLu8 δRu6 δRu7 δRu8 cRu1

Cycle 1 (Index next production). In Cycle 1 (Table 4), U9,3 reads the left-
most encoded symbol and locates the next encoded production to execute. U9,3

scans right until it reads b in state u1. Then U9,3 scans left in states u2 and u3

until it reads the subword δc∗. This subword is changed to δb∗ as U9,3 scans
right in states u1 and u3. The process is repeated until U9,3 reads b in state u3.
This indicates that we have finished reading the leftmost encoded symbol, or
pair of encoded symbols, and that the encoded production to be executed has
been indexed. This signals the end of Cycle 1 and the beginning of Cycle 2.

Table 4. Cycle 1 of U9,3

U9,3 u1 u2 u3

c bRu1 cLu3 cLu3

b cLu2 cLu2 bLu4

δ δRu3 δLu2 δRu1

Table 5. Cycle 2 of U9,3

U9,3 u4 u5 u6 u7 u8 u9

c bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b bLu4 bRu6 bRu7

δ δLu4 δLu8 δRu6 δRu7 δRu8



Four Small Universal Turing Machines 247

� u2u2u2, . . . 〈P (a2)〉(δcc)2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

�2 u3u3u3, . . . 〈P (a2)〉(δcc)2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

�4 u1u1u1, . . . 〈P (a2)〉(δcc)2δδccδc8δccδccδbbbbbδb4jqb4i−1δccc . . .

�44 u1u1u1, . . . 〈P (a2)〉(δcc)2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

�2 u4u4u4, . . . 〈P (a2)〉(δcc)2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

In the configuration immediately above the encoded production 〈P (a1)〉 has been
indexed and we have entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 5) prints the encoded production,
that was indexed in Cycle 1, immediately to the right of the encoded dataword.
U9,3 scans left in state u4 and records the next symbol of the encoded production
to be printed. If U9,3 reads the subword ccc it enters state u6, scans right, and
prints b at the right end of the encoded dataword. A single b is printed for each cc
pair that does not have δ immediately to its left. If U9,3 reads the subword cδcc
it scans right in state u7 and prints δ at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading the subword δδcc which causes U9,3 to enter Cycle 3.

�13 u4u4u4, . . . 〈P (a2)〉(δcc)2δδccδc6cc(δbb)3bbbδb4jqb4i−1δccc . . .

�3 u6u6u6, . . . 〈P (a2)〉(δcc)2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

�4(jq+i)+14 u6u6u6, . . . 〈P (a2)〉(δcc)2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

� u4u4u4, . . . 〈P (a2)〉(δcc)2δδccδc6bb(δbb)3bbbδb4jqb4i−1δbccc . . .

In the configuration immediately above the first symbol of the encoded produc-
tion 〈P (a1)〉 has been printed. Following the printing of the final symbol of the
encoded production we get:

�∗ u4u4u4, . . . 〈P (a2)〉(δcc)2δδccδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

�3 u8u8u8, . . . 〈P (a2)〉(δcc)2δδbbδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

In the configuration immediately above we have finished printing the encoded
production 〈P (a1)〉 to the right of the dataword and we have entered Cycle 3.

Cycle 3 (Restore tape). Cycle 3 (Table 6) restores 〈R〉 to its original value.
The tape head of U9,3 scans right switching between states u8 and u9 changing b
symbols to c symbols. This continues until U9,3 reads the δ marking the leftmost
end of the dataword in u9. Note from Table 1 and Equation (2) that there is an
even number of c symbols between each pair of δ symbols in 〈R〉 hence each δ
symbol in 〈R〉 will be read in state u8. Each ai symbol in the dataword is encoded
by an odd number of b symbols (〈ai〉 = b4i−1) and hence the first δ symbol in
the dataword will be read in state u9. This δ symbol marks the left end of the
new dataword and causes U9,3 to enter state u1 thus completing Cycle 3 and the
production simulation.



248 T. Neary and D. Woods

Table 6. Cycle 2 of U9,3

U9,3 u8 u9

b cRu9 cRu8

δ δRu8 cRu1

�25 u9u9u9, . . . 〈P (a2)〉(δcc)2δδccδc8(δcc)3cccδb4jqb4i−1δb3δccc . . .

� u1u1u1, . . . 〈P (a2)〉(δcc)2δδccδc8(δcc)3ccccbb4jq−1b4i−1δb3δccc . . .

In the configuration immediately above our example simulation of production
P (a1) is complete.

Theorem 2. Given a bi-tag system R hat runs in time t the computation of R
is simulated by U9,3 in time O(t2).

Proof. In order to prove the correctness of U9,3 we prove that U9,3 simulates
any possible P (a) or P (e, a) production of an arbitrary bi-tag system and, that
U9,3 also simulates halting when the encoded halt symbol 〈eh〉 is encountered.
In Example 1 U9,3 simulates P (a1) for an arbitrary bi-tag system where a1 is
the leftmost symbol in a fixed dataword. This example easily generalises to any
production P (ai) where ai is the leftmost symbol in an arbitrary dataword.
When some e ∈ E is the leftmost symbol in the dataword then some production
P (e, a) must be executed. The simulation of P (a1) in Example 1 is also used to
verify the simulation of P (e, a). Note from Equation (1) that there is no δ marker
between each 〈ej〉 and the adjacent 〈ai〉 to its right, thus 〈ej〉 and 〈ai〉 are read
together during Cycle 1. Using the encoding in Definition 3, the number of b
symbols in 〈ej〉〈ai〉 indexes 〈P (e, a)〉. Thus, the indexing of 〈P (e, a)〉 is carried
out in the same manner as the indexing of 〈P (a)〉. The printing of production
〈P (e, a)〉 during Cycle 2 and the subsequent restoring of 〈R〉 during Cycle 3
proceed in the same manner as with P (a1).

If the encoded halt symbol 〈eh〉 = b4hq is the leftmost symbol in the encoded
dataword, and 〈ai〉 = b4−i is adjacent, this is encoded via Definition 3 as follows:

u1u1u1, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)3(cc)∗bb4hq−1b4i−1δ(〈A〉δ)∗ccc . . .

During Cycle 1, immediately after reading the (4hq + 3)th b symbol in the data-
word, U9,3 scans left in u2 and we get the following:

�∗ u2u2u2, bccbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

�4 u5u5u5, bbbbc〈P (eh−1, aq)〉δcc . . . 〈P (a1)〉(δcc)3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

There is no transition rule in Table 3 for the case ‘when in u5 read b’, hence the
computation halts. � 

The proof of correctness given for U9,3 can be applied to the remaining machines
in a straightforward way, so we do not restate it.



Four Small Universal Turing Machines 249

3.3 U5,5

The dataword a1ejai is encoded via Equation (1) and Table 2 as bbbδb4jqb4i−1δ,
and P (a1) is encoded via Table 1 as 〈P (a1)〉 = δδd10. From Equation (1) we get
the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ2δδd10δδδbbbδb4jqb4i−1δccc . . .

Table 7. Table of behaviour for U5,5

U5,5 u1 u2 u3 u4 u5

g bLu1 gRu1 bLu3

b gLu1 gRu2 dRu5 gRu4 dRu3

δ cRu2 cRu2 δRu3 cRu4 dRu1

c δLu1 bLu3 δLu3 δLu3

d bLu1 gRu2 bLu5 bLu2 bLu4

Cycle 1 (Index next production). In Cycle 1 (Table 8) when U5,5 reads b in
state u1, it changes it to g and scans left until it reads δ. This δ is changed to c
and U5,5 then enters state u2 and scans right until it reads g which causes it to
re-enter state u1. This process is repeated until U5,5 reads the δ that separates a
pair of encoded symbols in the encoded dataword. This signals the end of Cycle 1
and the beginning of Cycle 2.

Table 8. Cycle 1 of U5,5

U5,5 u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

d bLu1

Table 9. Cycle 2 of U5,5

U5,5 u2 u3 u4 u5

g bLu3

b gRu2 gRu4

δ cRu2 δRu3 cRu4

c bLu3 δLu3 δLu3

d gRu2 bLu5 bLu2 bLu4

Table 10. Cycle 3 of
U5,5

U5,5 u3 u5

b dRu5 dRu3

δ δRu3 dRu1

�3 u1u1u1, . . . δ2〈P (a2)〉δ2δδd10δδcgbbδb4jqb4i−1δccc . . .

�18 u1u1u1, . . . δ2〈P (a2)〉δ2δδd10cccgggδb4jqb4i−1δccc . . .

� u2u2u2, . . . δ2〈P (a2)〉δ2δδd10cccgggcbb4jq−1b4i−1δccc . . .

Cycle 2 (Print production). Cycle 2 (Table 9) begins with U5,5 scanning
right and printing b to the right of the encoded dataword. Following this U5,5

scans left in state u3 and records the next symbol of the encoded production to
be printed. If U5,5 reads the subword dddd it enters state u2, scans right, and
prints b at the right end of the encoded dataword. If U5,5 reads the subword δdd
it scans right in state u4 and prints δ at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading δ in state u3, which causes U5,5 to enter Cycle 3.



250 T. Neary and D. Woods

�∗ u3u3u3, . . . δ2〈P (a2)〉δ2δδd6ddddδδδbbbδb4jqb4i−1δbccc . . .

�3 u2u2u2, . . . δ2〈P (a2)〉δ2δδd6dbbbδδδbbbδb4jqb4i−1δbccc . . .

�∗ u3u3u3, . . . δ2〈P (a2)〉δ2δδddb8δδδbbbδb4jqb4i−1δbbbccc . . .

�2 u4u4u4, . . . δ2〈P (a2)〉δ2δδbbb8δδδbbbδb4jqb4i−1δbbbccc . . .

�∗ u3u3u3, . . . δ2〈P (a2)〉δ2δδbbb8δδδbbbδb4jqb4i−1δbbbδccc . . .

Cycle 3 (Restore tape). In Cycle 3 (Table 10) the tape head of U5,5 scans
right switching between states u3 and u5 changing b symbols to d symbols.
This continues until U5,5 reads the δ marking the leftmost end of the encoded
dataword in u5. Note from Table 1 and Equation (2) that there is an even number
of d symbols between each pair of δ symbols in 〈R〉 hence each δ symbol in 〈R〉
will be read in state u3. Each ai symbol in the dataword is encoded by an odd
number of symbols (〈ai〉 = b4i−1) and hence the first δ symbol in the dataword
will be read in in state u5. This causes U5,5 to enter state u1 thus completing
Cycle 3 and the production simulation.

�19 u1u1u1, . . . δ2〈P (a2)〉δ2δδd10δδδddddbb4jq−1b4i−1δbbbδccc . . .

Halting for U5,5. If the encoded halt symbol 〈eh〉 = b4hq+2δ is the leftmost
symbol in the encoded dataword then this is encoded via Definition 3 as follows:

u1u1u1, cd〈P (eh−1, aq)〉δ . . . δ2〈P (a1)〉δ3(dd)∗bb4hq+1δ(〈A〉δ)∗ccc . . .

The computation continues as before until U5,5 enters Cycle 2 and scans left
in u3. Immediately after U5,5 reads the leftmost d during this leftward scan we
get:

� u5u5u5, cb〈P (eh−1, aq)〉′δ . . . δ2〈P (a1)〉′δ3(dd)∗b4hq+2δ(〈A〉δ)∗bccc . . .

In the configuration above, 〈P 〉′ denotes the word in which all the d symbols in
〈P 〉 are changed to b symbols. There is no transition rule in Table 7 for the case
‘when in u5 read c’ hence the computation halts.

3.4 U6,4

The dataword a1ejai is encoded via Equation (1) and Table (2) as bbbδb8jqb8i−5δb.
From Equation (1) we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ2〈P (a1)〉δδδbbbδb8jqb8i−5δbccc . . .

Table 11. Table of behaviour for U6,4

U6,4 u1 u2 u3 u4 u5 u6

g bLu1 gRu1 bLu3 bRu2 bLu6 bLu4

b gLu1 gRu2 bLu5 gRu4 gRu6 gRu5

δ cRu2 cRu2 δLu5 cRu4 δRu5 gRu1

c δLu1 gRu5 δLu3 cRu5 bLu3



Four Small Universal Turing Machines 251

Cycle 1 (Index next production). In Cycle 1 (Table 12) when U6,4 reads b in
state u1 it scans left until it reads δ. This δ is changed to c and U6,4 then enters
state u2 and scans right until it reads g which causes it to re-enter state u1. This
process is repeated until U6,4 reads the δ that separates a pair of encoded symbols
in the encoded dataword. This signals the end of Cycle 1 and the beginning of
Cycle 2.

Table 12. Cycle 1
of U6,4

U6,4 u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

Table 13. Cycle 2 of U6,4

U6,4 u2 u3 u4 u5 u6

g bLu3 bRu2 bLu6 bLu4

b gRu2 bLu5 gRu4

δ cRu2 δLu5 cRu4 δRu5

c gRu5 δLu3 cRu5 bLu3

Table 14. Cycle 3
of U6,4

U6,4 u5 u6

b gRu6 gRu5

δ δRu5 gRu1

Cycle 2 (Print production). Cycle 2 (Table 13) begins with U6,4 scanning right
and printing bb to the right of the encoded dataword. Following this, U6,4 scans left
in state u3 and records the next symbol of the encoded production to be printed.
If U6,4 reads the subword gggδ or gggb it enters state u2, scans right, and prints bb
at the right end of the encoded dataword. If U6,4 reads the subword δggb or δggδ
it scans right in state u4 and prints δb at the right end of the encoded dataword.
This process is repeated until the end of the encoded production is detected by
reading δ in state u5, which causes U6,4 to enter Cycle 3.

Cycle 3 (Restore tape). In Cycle 3 (Table 14) the tape head of U6,4 scans
right switching between states u5 and u6, changing b symbols to g symbols.
This continues until U6,4 reads the δ marking the leftmost end of the encoded
dataword in u6. Note from Table 1 and Equation (2) that there is an even number
of g symbols between each pair of δ symbols in 〈R〉, hence each δ symbol in 〈R〉
is read in state u5. Each ai symbol in the dataword is encoded by an odd number
of symbols (〈ai〉 = b8i−5) and hence the first δ symbol in the dataword is read
in state u6. This causes U6,4 to enter state u1, thus completing Cycle 3 and the
production simulation.

Special case for U6,4. If we are simulating a production of the form P (e, a) =
avakem we have a special case. Note from Table 2 and Cycle 2 that the simulation
of P (e, a) = avakem for U6,4 results in the word b8v−5δb8hq+8k−3δb8mqb being
printed to the right of the dataword. From Table 2 note that ak is not encoded
in this word in its usual from. However when U6,4 reads the subword b8hq+8k−3δ
it indexes 〈P (ak)〉 in H which results in 〈ak〉 being printed to the dataword. To
see this, note that the value of H from Equation (2) for U6,4 is as follows:

H = cgbV 2〈P (aq)〉V 2〈P (aq−1)〉 . . . V 2〈P (a1)〉V 3 (3)

The halting condition for U6,4 occurs in a similar manner to that of U5,5. Halting
occurs during the first scan left in Cycle 2 when U6,4 reads c in state u6 at the
left end of 〈R〉.



252 T. Neary and D. Woods

3.5 U18,2

The example dataword a1ejai is encoded via Equation (1) and Table (2) as
bcbcbcbb(bc)4jq(bc)4i−1bb(bc)2. From Equation (1) we get the initial configuration:

u1u1u1, . . . 〈P (a2)〉(cb)2〈P (a1)〉cbcbcbbcbcbcbb(bc)4jq(bc)4i−1bb(bc)2ccc . . .

Table 15. Table of behaviour for U18,2

U18,2 u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu2 cRu1 cLu5 cLu5 cLu4 bRu2 cLu8 bRu12 bLu10

b bRu3 bRu1 bLu9 bLu6 cLu4 cLu4 bLu9 bLu7 bLu7

U18,2 u10 u11 u12 u13 u14 u15 u16 u17 u18

c cRu13 bLu7 cRu11 cLu15 cRu13 bLu9 cRu17 cRu15

b bRu15 bRu12 bRu11 bRu14 bRu13 cRu16 bRu15 cRu18 cRu1

Cycle 1 (Index next production). In Cycle 1 (Table 16) U18,2 scans right in
states u1, u2 and u3 until it reads the subword bc. Following this, it scans left
in states u4, u5 and u6 until it reads the subword cb. This cb is changed to bb
and U18,2 re-enters state u1 and scans right. This process is repeated until U18,2

reads the bb that separates a pair of encoded symbols in the encoded dataword
during a scan right. This signals the end of Cycle 1 and the beginning of Cycle 2.

Table 16. Cycle 1 of U18,2

U18,2 u1 u2 u3 u4 u5 u6

c bRu2 cRu1 cLu5 cLu5 cLu4 bRu2

b bRu3 bRu1 bLu9 bLu6 cLu4 cLu4

Cycle 2 (Print production). In Cycle 2 (Table 17) U18,2 scans left in states
u7, u8 and u9 and records the next symbol of the encoded production to be
printed. If U18,2 reads the subword cc then it scans right in states u11and u12

and changes the cc immediately to the right of the encoded dataword to bc. If
U18,2 reads the subword ccb it scans right in states u13 and u14 and changes the
rightmost bc in the encoded dataword to bb. This process is repeated until the
end of the encoded production is detected by reading the subword bcb during
the scan left. This causes U18,2 to enter Cycle 3.

Cycle 3 (Restore tape). In Cycle 3 (Table 18) the tape head of U18,2 scans
right in states u15, u16, u17 and u18 changing each bc to cc and each bb to cb. This
continues until U18,2 reads the bb marking the leftmost end of the dataword in
u17 and u18. Note from Table 1 and Equation (2) that the number of cc subwords
between each pair of δ symbols in 〈R〉 is even, hence each bb pair is read in states
u15 and u16 and restored to cb. Each ai symbol in the dataword is encoded by
an odd number of bc subwords (〈ai〉 = (bc)4i−1) and hence the first bb pair in



Four Small Universal Turing Machines 253

Table 17. Cycle 2 of U18,2

U18,2 u7 u8 u9 u10 u11 u12 u13 u14 u15

c cLu8 bRu12 bLu10 cRu13 bLu7 cRu11 cLu15 cRu13 bLu9

b bLu9 bLu7 bLu7 bRu15 bRu12 bRu11 bRu14 bRu13

Table 18. Cycle 3 of U18,2

U18,2 u15 u16 u17 u18

c cRu17 cRu15

b cRu16 bRu15 cRu18 cRu1

the dataword is read in states u17 and u18, which causes U18,2 to enter state u1

thus completing Cycle 3 and the production simulation.
There is no halting condition for U18,2 and as such U18,2 simulates bi-tag

systems that have no halting symbol eh. Such bi-tag systems complete their
computation by entering a simple repeating sequence of configurations.

Acknowledgements. Turlough Neary is supported by the Irish Research Coun-
cil for Science, Engineering and Technology and Damien Woods is supported by
Science foundation Ireland grant number 04/IN3/1524.

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

2. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the
ACM 11(1), 15–20 (1964)

3. Hermann, G.: The uniform halting problem for generalized one state Turing ma-
chines. In: Proceedings, Ninth Annual Symposium on Switching and Automata
Theory, New York, October 1968, pp. 368–372. IEEE, Los Alamitos (1968)

4. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Sci-
ence 168(2), 241–255 (1996)

5. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
311–318. Springer, Heidelberg (2002)

6. Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for uni-
versality of Turing machines connected with a finite automaton. International Jour-
nal of Algebra and Computation 13(2), 133–202 (2003)

7. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:
Recursive Function Theory, Symposium in Pure Mathematics, Provelence, vol. 5,
pp. 229–238. AMS (1962)

8. Minsky, M.: Computation, finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)



254 T. Neary and D. Woods

9. Neary, T.: Small polynomial time universal Turing machines. In: Hurley, T., Seda,
A., et al. (eds.) 4th Irish Conference on the Mathematical Foundations of Computer
Science and Information Technology(MFCSIT), Cork, Ireland, August 2006, pp.
325–329 (2006)

10. Neary, T., Woods, D.: A small fast universal Turing machine. Technical Report
NUIM-CS-TR-2005-12, National university of Ireland, Maynooth (2005)

11. Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Computer
Science 362(1–3), 171–195 (2006)

12. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes (Springer) 13(6), 537–541 (1973)

13. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, 91–118 (1978) (Sufficient conditions for the
halting problem decidability of Turing machines) (in Russian))

14. Robinson, R.: Minsky’s small universal Turing machine. International Journal of
Mathematics 2(5), 551–562 (1991)

15. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

16. Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157–165 (1956)

17. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal
Turing machines. In: FOCS. 47th Annual IEEE Symposium on Foundations of
Computer Science, Berkeley, California, October 2006, pp. 132–143. IEEE, Los
Alamitos (2006)

18. Woods, D., Neary, T.: The complexity of small universal Turing machines. In:
Cooper, S.B., Lowe, B., Sorbi, A. (eds.) Computability in Europe 2007. CIE, Si-
enna, Italy, June 2007. LNCS, vol. 4497, pp. 791–798. Springer, Heidelberg (2007)

19. Woods, D., Neary, T.: Small semi-weakly universal Turing machines. In: Durand-
Lose, J., Margenstern, M. (eds.) Machines, Computations, and Universality
(MCU), Orélans, France, September 2007. LNCS, vol. 4664, pp. 306–323. Springer,
Heidelberg (2007)



Changing the Neighborhood of Cellular

Automata

Hidenosuke Nishio

ex. Kyoto University
Iwakura Miyake-cho 204-1, Sakyo-ku, 606-0022 Kyoto

yra05762@nifty.com

Abstract. In place of the traditional definition of a cellular automaton
CA = (S, Q, N, f), a new definition (S, Q, fn, ν) is given by introducing
an injection called the neighborhood function ν : {0, 1, ..., n − 1} → S,
which provides a connection between the variables of local function fn

of arity n and neighbors of CA: image(ν) is a neighborhood of size n.
The new definition allows new analysis of cellular automata. We first
show that from a single local function countably many CA are induced
by changing ν and then prove that equivalence problem of such CA is
decidable. Then we observe what happens if we change the neighbor-
hood. As a typical research topics, we show that reversibility of 2 states
3 neighbors CA is preserved from changing the neighborhood, but that
of 3 states CA is not.

Keywords: cellular automaton, neighborhood, decision problem, reversi-
bility, simulator.

1 Introduction

The cellular automaton (CA for short) is a uniformly structured information
processing system, which is traditionally defined by a 4-tuple (S, Q, N, f), where
S is a discrete space consisting of (infinitely) many cells, Q is a finite set of states
of each cell, N is a finite subset of S called the neighborhood of CA and f is a
function QN → Q called the local function. Among others, the neighborhood is
most important constituent of CA.

Most studies on CA first assume some standard neighborhood (von Neumann,
Moore) and then investigate the global behaviors (properties) or look for a local
function that would meet a given problem, say, the self-reproduction [1], the
Game of Life [2] and so on. In 2003, however, H.Nishio and M.Margenstern began
a general study of the neighborhood in its own right, where the neighborhood
N can be an arbitrary finite subset of S and particularly the problem if N
generates (fills) S has been discussed [3]. Following such a framework, we asked
the question: How does the Neighborhood Affect the Global Behavior of Cellular
Automata? It has been shown that there are some properties which depend on
the choice of the neighborhood, while there are some neighborhood-independent
properties [4]. Following such research works, the notion of the neighborhood

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 255–266, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



256 H. Nishio

function, though not named so, was first introduced by T. Worsch and H. Nishio
(2007) for achieving universality of CA by changing neighborhoods [5].

CA is now defined by a 4-tuple (S, Q, fn, ν), where fn is an n-ary local function
and ν is an injection {0, 1, ..., n−1} → S called the neighborhood function which
provides a connection between n variables of fn and n neighbors for each cell.
range(ν) is considered to be a usual neighborhood N . For instance, the von
Neumann neighborhood in Z2 is redefined by a neighborhood function ν such
that ν(0) = (0, 0), ν(1) = (0, 1), ν(2) = (0,−1), ν(3) = (1, 0) and ν(4) = (−1, 0).

This paper first gives the new definition of CA, then Section 3 shows that
infinitely many CA are induced from a single local function by changing the
neighborhoods and in Section 4 the equivalence problem of CA is proved decid-
able. In later sections, we observe what happens if we change the neighborhood
(function). In particular we show that reversibility of CA is preserved by chang-
ing the neighborhood, if CA has 2 states but not if it has 3 states. Appendix
gives some illustrative simulations of Rule 110 by a newly made Java Applet
simulator which affords to change the neighborhood.

2 Definitions

Though the theory applies to higher dimensional CA, we describe definitions
only for 1-dimensional CA. 1-dimensional CA is defined by a 4-tuple (Z, Q, fn, ν),
where

1. Z is the set of integers, each cell being identified by an integer,
2. Q is the set of states of a cell and assumed to be a finite field GF (q) where

q = pk with a prime p and a positive integer k,
3. fn : Qn → Q is the local function of arity n ≥ 1: fn(x0, x1, ..., xn−1) and
4. ν is an injection from {0, 1, ..., n − 1} to Z which we call the neighborhood

function. The neighborhood function defines connection between variables
of fn and neighbors for CA: xi is connected to ν(i) for 0 ≤ i ≤ n − 1.
In this way, range(ν) = (ν(0), ν(1), ..., ν(n − 1)) defines the neighborhood of
CA in the ordinary sense. Note that range(ν) or the neighborhood is not
simply a subset of Z, but an ordered list of integers (neighbors). That is
(−1, 0, 1) �= (−1, 1, 0). The degenerate neighborhood where ν is not injective
(many to one mapping) also will do, but we will not discuss such a case in
this paper.

fn(x0, x1, x2, ..., xn−1) is expressed by a polynomial over Q in n variables, see
[6]. In case of ternary function, it reads

f3(x, y, z) = u0 + u1x + u2y + · · ·+ uix
hyjzk + · · ·

+ uq3−2x
q−1yq−1zq−2 + uq3−1x

q−1yq−1zq−1,

where ui ∈ Q, 0 ≤ i ≤ q3 − 1. (1)



Changing the Neighborhood of Cellular Automata 257

Furthermore, if Q = GF (2) = {0, 1}, we have

f3(x, y, z) = u0 + u1x + u2y + u3z + u4xy + u5xz + u6yz + u7xyz,

where ui ∈ {0, 1}, 0 ≤ i ≤ 7. (2)

A local function f3 expressed by Equation (2) is called Elementary Local Func-
tion (ELF for short). From Equation (2) there are 28 = 256 ELF. The neighbor-
hood function νE such that range(νE) = (−1, 0, 1) is called Elementary Neigh-
Borhood function (ENB for short). (Z, GF (2), f3, νE) or (Z, GF (2), f3, (−1, 0, 1))
is an Elementary Cellular Automaton (ECA for short) as usually called. ECA
have been extensively investigated by many authors like S.Wolfram [8], where
every ECA(ELF) is identified by a Wolfram number. There is a clear one-to-one
correspondence between the polynomial expression and the Wolfram number;
for example f = x + z over GF (2) is rule 90. In this paper both expressions are
exploited wherever neccessary.

Finally, the global map Fν : QZ → QZ is defined. For any global configuration
c ∈ QZ and j ∈ Z, c(j) means the state of cell j in c. Then we have

Fν(c)(j) = f(c(j + ν(0)), c(j + ν(1)), ..., c(j + ν(n− 1))). (3)

Illustrations

Traditional CA. (Z, Q, N, f), with space Z, cell states Q, neighborhood N =
(−1, 0, 1) and local function f : QN → Q is illustrated by Fig.1.

c � � � c(−2) c(−1) c(0) c(1) c(2) � � �
�
�
�
�� �

�
�

�
��

��
��
��
	

f

�

�
�
�
�� �

�
�

�
��

��
��

f

�

�
�
�
�� �

�
�

�
��

��
��

f

�

�
�
�
�� �

�
�

�
��

��
��

f

�

�
�
�
�� �

�
�

�
��

��
��

f

�
c′(−2) c′(−1) c′(0) c′(1) c′(2)c′ = F (c) � � � � � �

Fig. 1. Traditional definition of CA

New CA. (Z, Q, f3, ν), where ternary function f3(x0, x1, x2) and neighborhood
function ν : {0, 1, 2} → Z together define a CA, which has the local state transi-
tion rule f : Q(ν(0),ν(1),ν(2)) → Q. Fig. 2 illustrates the case range(ν) = (−2, 0, 1).



258 H. Nishio

Fig. 2. New definition of CA

3 Infinitely Many CA Induced by Changing the
Neighborhood

In this section, we show a basic theorem which formally proves that changing
the neighborhood induces infinitely many CA from a single local function. The
theorem is given for the case of 1-dimensional CA with local functions in 3 vari-
ables, but it will be enough for showing the power of changing the neighborhood.
In the next section, an equivalence problem of CA by new definition is proven
to be decidable.

Theorem 1. By changing the neighborhood function ν, infinitely many different
global CA functions are induced by any single local function f3(x, y, z) which is
not constant.

Proof: It is clear that to each non-constant function f3 at least one of the fol-
lowing three cases applies.

1) If f3(a, b, c) �= f3(a, b, c′) for a, b, c �= c′ ∈ Q, consider CA and CA’ which
have the same local function f3(x, y, z) and different neighborhoods (−1, 0, 1+k)
and (−1, 0, 1 + k′) where 0 ≤ k < k′. Then, for configuration W = vabδcδ′c′w,
where W (0) = b, δ and δ′ are words of lengths k − 1 and k′ − k − 1 and v, w
are semi-infinite words over Q, we have F (W )(0) = f3(a, b, c) �= f3(a, b, c′) =
F ′(W )(0). That is F (W ) �= F ′(W ).

−1 0 k k′

W · · · v a b δ c δ′ c′ w · · ·

F (W ) · · · v′ f3 ζ ζ′ w′ · · ·

In this way, countably many different CA {(Z, Q, f3, (−1, 0, 1 + k)), k ≥ 1} are
induced from a single local function f3.



Changing the Neighborhood of Cellular Automata 259

2) If f3(a, b, c) �= f3(a, b′, c) for a, b �= b′, c ∈ Q, consider CA and CA’ which
have the same local function f3(x, y, z) and different neighborhoods (−1, 2+k, 1)
and (−1, 2 + k′, 1), where 0 ≤ k < k′. Then, for configuration W = vadcδbδ′b′w,
where W (0) = d, δ and δ′ are words of lengths k − 1 and k′ − k − 1 and v, w
are semi-infinite words over Q, we have F (W )(0) = f3(a, b, c) �= f3(a, b′, c) =
F ′(W )(0). That is F (W ) �= F ′(W ).

−1 0 1 k k′

W · · · v a d c δ b δ′ b′ w · · ·

F (W ) · · · v′ f3 ζ ζ′ w′ · · ·

In this way, countably many different CA {{(Z, Q, f3, (−1, 2+ k, 1)), k ≥ 1} are
induced from a single local function f3.

3) If f3(a, b, c) �= f3(a′, b, c) for a �= a′, b, c ∈ Q, consider CA and CA’ which
have the same local function f3(x, y, z) and different neighborhoods (−k−1, 0, 1)
and (−k′ − 1, 0, 1) where 0 ≤ k < k′. Then, for configuration W = va′δ′aδbcw,
where W (0) = b, δ and δ′ are words of lengths k − 1 and k′ − k − 1 and v, w
are semi-infinite words over Q, we have F (W )(0) = f3(a, b, c) �= f3(a′, b, c) =
F ′(W )(0). That is F (W ) �= F ′(W ).

k′ k 0 1
W · · · v a′ δ′ a δ b c w · · ·

F (W ) · · · v′ ζ′ ζ f3 w′ · · ·

In this way, countably many different CA {(Z, Q, f3, (−1 − k, 0, 1)), k ≥ 1) are
induced from a single local function f3. �
Corollary 1. There are infinitely many 2 states 3 neighbors CA different from
any ECA.

4 Equivalence Problem of CA

When Z and Q are understood, we denote (Z, Q, fn, ν) simply by (fn, ν).

Definition 1. Two CA (fn, ν) and (f ′
n′ , ν′) are called equivalent, denoted by

(fn, ν) ∼= (f ′
n′ , ν′), if and only if their global maps are equal.

Note that there is a local function which induces an equivalent CA for different
neighborhood functions, while different local functions may induce an equivalent
CA by changing the neighborhood function. For example, (R85, (−1, 0, 1)) ∼=
(R51, (−1, 1, 0)), where R85 and R51 are ELF in Wolfram number which give
reversible ECA on ENB, see proof of Theorem 7.

We have here a decidability theorem whose proof is independent of dimen-
sionality.



260 H. Nishio

Theorem 2. The equivalence problem of CA is decidable.

Proof: Consider two CA (fn, ν) and (f ′
n′ , ν′) for the same set Q of states. Let

N = range(ν)∪range(ν′). We will consider finite “subconfigurations” � : N → Q.

Changing in c the states of cells outside the finite part N has no influence in
the computation of F (c)(0) or F ′(c)(0). Thus any subconfiguration � determines
states F (c)(0) or F ′(c)(0) which we denote G(�) and G′(�).

• Now assume, that the two CA are not equivalent: (fn, ν) �∼= (f ′
n′ , ν′), i.e.

the corresponding global maps F and F ′ are not the same. Then there is
a configuration c such that F (c) �= F ′(c). Since global maps commute with
the shift, it is without loss of generality to assume that F (c)(0) �= F ′(c)(0).
Hence in this case there is an � = c|N such that G(�) �= G′(�).

• On the other hand, when there exists an � such that G(�) �= G′(�), then
obviously F and F ′ will be different for any configuration c satisfying c|N = �
and hence the CA are not equivalent.

For deciding the equivalence it is therefore sufficient to check whether for all
� : N → Q holds: G(�) = G′(�). If this is the case, the two CA are equivalent, if
not they are not. �

In the following, we generally discuss the case n = n′ (local functions are of the
same arity). For an example of the case n �= n′, see Proposition 1 below.

The following easily proved proposition shows that for CA defined by the
neighborhood function ν, there is an equivalent CA having the ordinary neigh-
borhood of scope 2r + 1.

Proposition 1. For (fn, ν), let r = max{|ν(i)| | 0 ≤ i ≤ n− 1}. Then there is
an equivalent (f ′

2r+1, ν
′) such that range(ν′) = (−r,−r +1, ..., 0, ...., r− 1, r) and

f ′
2r+1 takes the same value as fn on range(ν), while variables xi are don’t care

for i such that ν′(i) /∈ range(ν).

5 Neighborhood Family and Permutation Family

We define two families of CA which are obtained by changing or permuting the
neighborhood being the local function fixed and investigate what properties are
preserved from changing or permuting the neighborhood.

Definition 2. The neighborhood family F(fn) of fn is an infinite set of global
functions defined by

F(fn) =
⋃

ν∈Nn

{(fn, ν)}, (4)

where Nn is the set of all injections ν : {0, . . . , n− 1} → Z.



Changing the Neighborhood of Cellular Automata 261

Definition 3. A permutation π of range(ν) is denoted by π(ν) or simply π when
ν is known. The permutation family P(fn, ν) of (fn, ν) is a finite set of global
functions defined by

P(fn, ν) =
n!−1⋃
i=0

{(fn, πi(ν))}. (5)

Example: In case of n=3 there are 6 permutations of ENB.

π0 = (−1, 0, 1), π1 = (−1, 1, 0), π2 = (0,−1, 1),
π3 = (0, 1,−1), π4 = (1,−1, 0), π5 = (1, 0,−1).

Proposition 2. The set of CA {(fn, ν) | fn : n-ary function} is closed under
permutation of the neighborhood. That is

⋃
fn

P(fn, ν) =
n!−1⋃
i=0

{(fn, πi(ν))} =
⋃
fn

{(fn, ν)}. (6)

Proof: Since a permutation of the neighborhood amounts to a permutation of
the variables of the local function with the neighborhood being fixed to ν, for
any fn there is a function gn and permutation πi such that (fn, ν) ∼= (gn, πi(ν))
for some 1 ≤ i ≤ n!− 1. �
Here are three properties of CA which are preserved from changing the neigh-
borhood. See also [4].

Proposition 3. fn(x1, ..., xn) is called totalistic if it is a function of
∑n

i=1 xi.
If fn is totalistic, then any (fn, ν) ∈ F(fn) is totalistic.

Proposition 4. An affine CA is defined by a local function

fn(x1, x2, ..., xn) = u0 + u1x1 + · · ·+ unxn, where ui ∈ Q, 0 ≤ i ≤ n.

If fn is affine, then any (fn, ν) ∈ F(fn) is affine.

Proposition 5. A local function f : Qn → Q is called balanced if |f−1(a)| =
|Q|n−1, ∀a ∈ Q. A finite CA is called balanced if any global configuration has
the same number of preimages. In case of finite CA, if (fn, ν) is balanced then
(fn, π(ν)) is balanced for any π.

In contract, here is a property which is sensitive to permutation of the neigh-
borhood.

Proposition 6. The number-conserving ECA is sensitive to permutation.

Proof: The only number-conserving ECA are (R184, π0) and its conjugate
(R226, π0) [7]. It is seen that (R184, π2) ∼= (R172, π0) which is not number-
conserving. A similar relation holds for R226. �



262 H. Nishio

6 Reversibility of CA

This section addresses the problem how the reversibility of 2 and 3 states 3
neighbors CA is affected by changing the neighborhood.

Proposition 7. The set of 6 reversible ECA is closed under permutation.

Proof: There are 6 reversible ECA; R15, R51, R85, R170, R204, R240 expressed
by Wolfram numbers, see page 436 of [8]. Their local functions are listed in
Table 1. In the sequel such 6 functions are called elementary reversible func-
tions(ERF for short). Note that R204 is the conjugate of R51, R240 is the con-
jugate of R15 and R170 is the conjugate of R85.

Table 1. Reversible CA with 2 states 3 neighbors

local configuration 000 001 010 011 100 101 110 111

R15 1 1 1 1 0 0 0 0
R51 1 1 0 0 1 1 0 0
R85 1 0 1 0 1 0 1 0

R170 0 1 0 1 0 1 0 1
R204 0 0 1 1 0 0 1 1
R240 0 0 0 0 1 1 1 1

For instance, from R51, by permuting ENB, we obtain R15 and R85. Summing
up, we see that

(R51, π1) ∼= (R85, π0), (R51, π2) ∼= (R15, π0), (R51, π3) ∼= (R15, π0)
(R51, π4) ∼= (R15, π0), (R51, π5) ∼= (R51, π0) x ↔ z symmetry.

Similarly from R204 we obtain R170 and R240 by permutation. Note, however,
that R170 can not be obtained by permutation of R51 but by taking conjugate.
In other word, P(R51, νE) ∩ P(R170, νE) = ∅. �

Proposition 8. Any 2 states 3 neighbors local function fERF from Table 1
induces a reversible CA (fERF , ν) for any ν, particularly for ν �= ENB.

Proof: R15 = x+1, where variables y and z are don’t care, and CA (R15, ENB)
is essentially a right shift by 1 cell. Now, it is seen that (R15, (−k, l, m)) is a
right shift by k cells for any integers k, l, m, which is a reversible CA. Since
R51 = y + 1 and R85 = z + 1, we have the same conclusion that they define
reversible CAs for any neighborhood functions. As for R170 = z, R204 = y and
R240 = x, we have the same conclusion. �

Since in Zn, too, a reversible local function fERF from Table 1 is a shift by one
cell, summing up the above propositions we have



Changing the Neighborhood of Cellular Automata 263

Theorem 3. n-dimensional CA (Zn, GF (2), fERF , ν) is reversible for any ν :
{0, 1, 2)→ Zn.

Problem 1. Are there irreversible ECA which become reversible by permuting
or changing the neighborhood?

Problem 2. Investigate the same problem for CA having local functions of arity
larger than 3 and corresponding neighborhoods of size larger than 3:
(Z, GF (2), fn, ν), n ≥ 4.

In contrast to the binary state case, we see that a reversible 3 states CA on ENB
becomes irreversible on neighborhoods different from ENB.

Proposition 9. Reversible 3 states CA (Z, GF (3), f3, ENB) is not always re-
versible, when the neighborhood is different from ENB.

Proof: We give a counter example for 3 stats 3 neighbors CA; Among 333
3 states

CA on ENB, 1800 are reversible. A reversible CA R270361043509 appearing
in p.436 of [8] is proved not reversible when the neighborhood is changed to
(−1, 0, 2) as is shown below;

Injectivity: R270361043509 on neighborhood (−1, 0, 2) maps both global config-
urations 010 and 0110 to 101. So, it is not injective.

Surjectivity: David Sehnal [9], student of the University of Bruno (CZ), showed
by Mathematica computation that R270361043509 is not surjective on (−1, 0, 2).
Naonori Tanimoto [10], graduate student of the Hiroshima University (JP), also
confirmed Sehnal’s conclusion by his C-code computation.

Recently Clemens Lode [11], student of the University of Karlsruhe (DE), wrote a
Java program called catest105 which checks injectivity and surjectivity of CA for
arbitrary neighborhoods. The program classifies R270361043509 as not injective
and not surjective on (−1, 0, 2). Moreover, catest105 can test injectivity and
surjectivity of arbitrary local functions on all (6) permutations of ENB. Owing
to the program, we see that R270361043509 is reversible on ENB = (−1, 0, 1)
and (1, 0,−1) but not on the other neighborhoods. �

Conjecture 1. By use of the above mentioned program by C. Lode we see that
another 3 states reversible CA R277206003607 in [8] is reversible on all per-
mutations of ENB and on permutations of many other neighborhoods such as
(−1, 0, 2), (−1, 0, 3) and (−2, 0, 1). From this, we conjecture that R277206003607
is reversible for arbitrary neighborhoods of size 3 in Z.

7 Concluding Remarks and Acknowledgements

In the paper, a new definition of CA with the neighborhood function was given ,
which triggered new research of CA. The results established here are limited to
basic ones and many interesting problems are being left to be solved. Apart from
those already mentioned, the computer simulation given in Appendix suggests



264 H. Nishio

for example the following problems: Is Rule 110 universal for a neighborhood
different from ENB? Is there any other ELF which gives a universal CA for a
cleverly chosen neighborhood?

The author expresses his thanks to Thomas Worsch for his cooperation through-
out the research work at the University of Karlsruhe, October-December 2006 as
well as the preparation of this paper later on.

References

1. von Neumann, J., Burks(ed.), A.W.: Theory of Self-reproducing Automata. Univ.
of Illinois Press (1966)

2. Gardner, M.: The fantastic combinations of John Conway’s new game of ’life’.
Scientific American 223 (1970) 120–123

3. Nishio, H., Margenstern, M., von Haeseler, F.: On algebraic structure of neigh-
borhoods of cellular automata –Horse Power Problem– to appear in Fundamenta
Informaticae, 2006.

4. Nishio, H.: How does the neighborhood affect the global behavior of cellular au-
tomata? In: Proceedings of ACRI2006, eds. El Yacouybi, B. Chopard and S. Ban-
dini. Volume LNCS 4173. (2006) 122–130

5. Worsch, T., Nishio, H.: Variations on neighborhoods in CA—How to simulate
different CA using only one local rule. Eurocast2007, Workshop on CA, February
2007.

6. Nishio, H., Saito, T.: Information dynamics of cellular automata I: An algebraic
study. Fundamenta Informaticae 58 (2003) 399–420

7. Boccara, N.: Randomized cellular automata. arXiv:nlin/0702046v1 (2007)
8. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)
9. Sehnal, D.: private communication, June 2006.

10. Tanimoto, N.: private communication, November 2006.
11. Lode, C.: private communication, February 2007.
12. Scheben, C.: http://www.stud.uni-karlsruhe.de/ uoz3/cgi/main.cgi/

menu=submenuPrograms&view=view/ca.html.

Appendix: Java Applet Simulator for 1-Dimensional CA

We are using a Java Applet simulator of 1-dimensional CA coded by Christoph
Scheben for the Institute of Informatics, University of Karlsruhe [12]. It works
for arbitrary local function, number of states, neighborhood and initial configu-
ration (including random configurations) up to 1,000 cells with cyclic boundary
and 1,000 time steps. The simulator is the first of this kind —arbitrary neigh-
borhoods. It has been well finished and proved very useful for our research work.

The following three figures are outputs of the simulator, where the local func-
tion Rule 110 is fixed while the neighborhood is changed. Number of cells ×
time is 100 × 100 with cyclic boundary. The initial configuration is random
(p(0) = p(1) = 0.5) and the same for three cases.



Changing the Neighborhood of Cellular Automata 265

Fig. 3. Rule 110 with neighborhood (−1, 0, 1)=ENB

Fig. 4. Rule 110 with neighborhood (−2, 0, 1)



266 H. Nishio

Fig. 5. Rule 110 with neighborhood (0, −1, 1)



A Simple P-Complete Problem

and Its Representations by Language Equations�

Alexander Okhotin

Academy of Finland and
Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

alexander.okhotin@utu.fi

Abstract. A variant of Circuit Value Problem over the basis of Peirce’s
arrow (NOR) is introduced, in which one of the inputs of every k-th gate
must be the (k − 1)-th gate. The problem, which remains P-complete,
is encoded as a simple formal language over a two-letter alphabet. It is
shown that this language can be naturally and succinctly represented
by language equations from several classes. Using this representation, a
small conjunctive grammar and an even smaller LL(1) Boolean grammar
for this language are constructed.

1 Introduction

The notion of a language complete for a family of languages with respect to one
of the standard types of reductions is one of the main concepts in computation
theory. For every noteworthy class of automata or grammars, such that the
language family they generate contains a complete set, it is interesting to find
a succinct specification of such a set. For instance, for the class of recursively
enumerable (r.e.) sets, the standard specification of a complete set is a universal
Turing machine, and finding the smallest such machine has been a subject for
research, see Rogozhin [19]. Recently there have been numerous papers on small
descriptions of r.e.-complete sets using non-standard formal systems.

Similar research is occasionally done for automata and grammars of a re-
stricted computational power, which can sometimes solve complete problems
for the complexity class that bounds their expressive power. Let us note a pa-
per by Sudborough [20], who constructed a linear context-free grammar for an
NL-complete language, at the same time proving that all linear context-free lan-
guages to lie in NL. Similarly, Galil [3] found a P-complete language accepted by
a two-way deterministic pushdown automaton; his construction was improved by
Ladner [9]. The existence of a trellis automaton accepting a P-complete language
was demonstrated by Ibarra and Kim [7]. A linear conjunctive grammar for a
P-complete problem was constructed by the author [13]. An amazing example
of P-completeness in elementary cellular automata was recently found by Neary
and Woods [10].

� Supported by the Academy of Finland under grants 118540 and 206039.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 267–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



268 A. Okhotin

This paper considers a class of language equations [14,15,17], whose solutions
are known to lie in P, and which are already known to specify some P-complete
sets. The goal is to construct very succinct specifications of such sets. For this
purpose, a new variant of the Circuit Value Problem [9,5,6] is proposed in Sec-
tion 2 and proved to be P-complete. The set of yes-instances of this problem
is encoded as a formal language in Section 3, and four different representations
of this language using language equations with different sets of operations are
constructed in Section 4.

These representations are next used to construct formal grammars for this
problem. The classes of grammars considered are closely related to language
equations: these are conjunctive grammars [11], which generalize context-free
grammars with an explicit conjunction operation, and Boolean grammars [15],
which further add negation to the formalism. An up-to-date survey of these
grammars has recently appeared [18].

Conjunctive grammars for P-complete problems have been constructed before,
using a mechanical simulation of a 45-state trellis automaton over a 9-letter
alphabet [13]. The resulting linear conjunctive grammar contains 452 · 92 + 1 =
164026 rules. Using a conjunctive grammar with unrestricted concatenation, it is
sufficient to have around 452 +9+1 = 2035 rules. Though the majority of these
rules are not actually needed, reducing their number would require a tedious
proof.

The proposed variant of the circuit value problem results in a significant
reduction in size. The conjunctive grammar given in Section 5 uses only 8 rules,
while the Boolean grammar constructed in Section 6 contains as few as 5 rules.
In addition, one can obtain an equivalent LL(1) Boolean grammar [16] with 8
rules; this is a subclass of Boolean grammars that can be parsed using generalized
recursive descent. The latter result implies P-completeness of some variants of
the recursive descent parsing used in software engineering [2].

2 A Variant of the Circuit Value Problem

A circuit is an acyclic directed graph, in which the incoming arcs in every vertex
are considered ordered, every source vertex is labelled with a variable from a
certain set {x1, . . . , xm} (m � 1), each of the rest of the vertices is labelled with
a Boolean function of k variables (where k is its in-degree), and there is a unique
sink vertex. For every Boolean vector of input values (σ1, . . . , σm) assigned to
the variables, the value computed at each gate is defined as the value of the
function assigned to this gate on the values computed in the predecessor gates.
The value computed at the sink vertex is the output value of the circuit on the
given input.

The Circuit Value Problem (CVP) is stated as follows: given a circuit with
gates of two types, f1(x) = ¬x and f2(x, y) = x ∧ y, and given a vector
(σ1, . . . , σm) of input values assigned to the variables (σi ∈ {0, 1}), determine
whether the circuit evaluates to 1 on this vector. The pair (circuit, vector of
input values) is called an instance of CVP. This is the fundamental problem



A Simple P-Complete Problem and Its Representations 269

complete for P, which was proved by Ladner [9]. A variant of this problem is
the Monotone Circuit Value Problem (MCVP), in which only conjunction and
disjunction gates are allowed. As shown by Goldschlager [5], MCVP remains
P-complete.

A multitude of other particular cases of CVP are known to be P-complete [6].
Let us define one more version of this standard computational problem:

– The notion of an input variable is eliminated, and the circuit is deemed to
have a single source vertex, which, by definition, assumes value 1.

– A single type of gate is used. This gate implements Peirce’s arrow x ↓
y = ¬(x ∨ y), also known as the NOR function. It is well-known that every
Boolean function can be expressed as a formula over this function only.

– The first argument of every k-th NOR gate has to be the previous (k−1)-th
gate, while the second argument can be any preceding gate. Because of that,
these gates will be called restricted NOR gates.

Let us call this kind of circuit a sequential NOR circuit, and let the problem of
testing whether such a circuit evaluates to 1 be called sequential NOR circuit
value problem. We shall now see that instances of the ordinary CVP can be
mechanically translated to this restricted form.

Let any circuit with conjunction and negation gates be given. The first two
gates of the output sequential NOR circuit have to be C0 = 1 and C1 = C0 ↓
C0 = 0. Every time the input circuit refers to a variable, the output circuit refers
to C0 or C1. Each negation gate ¬Cj in the input circuit can be expressed via
two restricted NOR gates as follows:

Ci = Ci−1 ↓ C0 (= ¬(Ci−1 ∨ 1) = ¬1 = 0)
Ci+1 = Ci ↓ Cj (= ¬(Ci ∨ Cj) = ¬(0 ∨Cj) = ¬Cj)

Note that the first gate Ci resets the computation to 0 regardless of the value
computed in Ci−1, while the second gate Ci+1 substitutes this constant 0 into
Peirce’s arrow to obtain negation.

Similarly, a conjunction of two gates, Cj and Ck, can be implemented using
the following five restricted NOR gates1:

Ci = Ci−1 ↓ C0 (= 0)
Ci+1 = Ci ↓ Cj (= ¬Cj)
Ci+2 = Ci+1 ↓ C0 (= 0)
Ci+3 = Ci+2 ↓ Ck (= ¬Ck)
Ci+4 = Ci+3 ↓ Ci+1 (= ¬(¬Cj ∨ ¬Ck) = Cj ∧ Ck)

The gates Ci and Ci+1 compute ¬Cj as above, the gates Ci+2 and Ci+3 similarly
compute ¬Ck, and the last gate Ci+4 computes Peirce’s arrow of Ci+1 and Ci+3,
which is exactly the conjunction of Cj and Ck.

1 Actually, there exist several shorter four-gate implementations (e.g., Ci = Ci−1 ↓ C0,
Ci+1 = Ci ↓ Cj , Ci+2 = Ci+1 ↓ Ck, Ci+3 = Ci+2 ↓ Ci+1), but they are not as easy
to understand as the slightly larger circuit given in the text.



270 A. Okhotin

The resulting sequential NOR circuit evalutes to 1 if and only if the original
circuit evaluates to 1. In addition, this transformation can be carried out by a
logarithmic-space transducer. This proves that the sequential NOR circuit value
problem is P-complete.

3 Encoding of Circuits

Let us now give a simple encoding of sequential NOR circuits as strings over the
alphabet {a, b}∗. Consider any such circuit

C0 = 1
C1 = C0 ↓ C0

C2 = C1 ↓ Cj2

...
Cn−1 = Cn−2 ↓ Cjn−1

Cn = Cn−1 ↓ Cjn

where n � 0 and 0 	 ji < i for all i. The gate C0 is represented by the empty
string. Every restricted NOR gate Ci = f(Ci−1, Cji) is represented as a string
ai−ji−1b. The whole circuit is encoded as a concatenation of these representations
in the reverse order, starting from the circuit Cn and ending with . . . C1C0:

an−jn−1b a(n−1)−jn−1−1b . . . a2−j2−1b a1−j1−1b

The set of syntactically correct circuits can be formally defined as follows:

{an−jn−1ba(n−1)−jn−1−1b . . . a2−j2−1ba1−j1−1b | n � 0 and, for each i, 0 	 ji <i}

This language is already non-context-free, but it is computationally easy: one
can straightforwardly construct a logspace Turing machine to test a string for
being a description of a circuit.

The language of correct circuits that have value 1 has the following fairly
succinct definition:

{an−jn−1ba(n−1)−jn−1−1b . . . a2−j2−1ba1−j1−1b | n � 0 and ∃y0, y1, . . . , yn, s.t.
y0 = yn = 1 and ∀i (1 	 i 	 n), 0 	 ji < i and yi = ¬(yi−1 ∨ yji)}

This is a P-complete language, and it has a simple structure that reminds of the
examples common in formal language theory. As it will now be demonstrated,
this set can indeed be very succinctly defined by language-theoretic methods.

4 Representation by Language Equations

Language equations with Boolean operations and concatenation will now be
used to replicate the above definition of the problem. In general, such equations



A Simple P-Complete Problem and Its Representations 271

are known to have computationally universal expressive power, and most of their
properties are undecidable [14]. However, all constructed equations will belong to
a special class of strict systems [1,12], which are known to have unique solutions.
The membership of strings in these solutions can be tested in cubic time [15].

Let us start with an equivalent inductive definition of the set of syntactically
correct circuits.

– ε is a well-formed circuit.
– A string ambw is a well-formed circuit if and only if w is a well-formed

circuit, and the latter circuit contains at least m gates besides C0, that is,
w = (a∗b)mx for some x ∈ {a, b}∗.

– Nothing else is a well-formed circuit.

The set of well-formed circuits that have value 1 (that is, the yes-instances of
the CVP) can be defined inductively as follows:

– The circuit ε has value 1.
– Let ambw be a syntactically correct circuit. Then ambw has value 1 if and

only if both of the following statements hold:
1. w is not a circuit that has value 1 (in other words, w is a circuit that

has value 0);
2. w is in (a∗b)mu, where m � 0 and u is not a circuit that has value 1

(that is, u is a circuit that has value 0).

Checking the representation amb(a∗b)mu requires matching the number of as
in the beginning of the string to the number of subsequent blocks (a∗b), as shown
in Figure 1. This can naturally be specified by a context-free grammar for the
following language:

L0 =
⋃

m�0

amb(a∗b)m (1)

To be precise, the language L0 is linear context-free and deterministic context-
free; furthermore, there exists an LL(1) context-free grammar for this language.

Using L0 as a constant, one can construct the following language equations,
which are the exact formal representation of the above definitions:

X = a∗bX ∩ L0X (2a)
Y = ε ∪ (a∗bY ∩ L0{a, b}∗) (2b)

Fig. 1. Looking up a gate



272 A. Okhotin

The equation for Y defines well-formed descriptions of circuits: its unique so-
lution is the language of all such descriptions. The equation for X similarly
transcribes the definition of the set of circuits that have value 1. According to
the definition, a string is a well-formed circuit that has value 1 if and only if it
is syntactically correct and it satisfies (2a). Thus the final result is obtained by
intersecting X and Y using an additional equation:

Z = X ∩ Y (3)

Now the system of equations (2a, 2b, 3) has a unique solution X = L, Y = L′,
Z = L′′, in which L′ is the set of syntactically correct circuits, while L′′ is the
requested set of yes-instances of the given encoding of CVP.

Furthermore, since L∩L′ = L′′, the language L contains a valid description of
a circuit if and only if this circuit has value 1, so L, in spite of containing garbage
that does not describe any circuits, still correctly represents the yes-instances
of the circuit value problem. Therefore, the unique solution of the individual
equation (2a) is P-complete.

This is worth being stated as the main result of this paper:

Theorem 1. There exists an LL(1) context-free language L0 ⊆ {a, b}+, which is
at the same time linear context-free, such that the unique solution of the language
equation X = a∗bX ∩ L0X is a P-complete language. The language L0 is given
by the grammar {S → aSAb, S → b, A → aA, A → ε}.
Two constants in this equation can be combined into one, resulting in the fol-
lowing variant of this equation:

Corollary 1. Consider the linear context-free language L1 = L0∪a∗b ⊆ {a, b}+.
Then the language equation X = L1X has a P-complete unique solution.

Yet another variant of this equation is obtained by substituting it in itself: the
equation X = L1L1X has the same unique solution. Here nested concatenation
and complementations form a monotone operation on languages known as the
dual of concatenation [17]:

K ) L = K · L = {w | ∀u, v : w = uv ⇒ u ∈ K or v ∈ L}

In terms of this operation the above equation is reformulated as follows:

Corollary 2. Let L2 = L1, which is also a linear context-free language. Then
the unique solution of the equation X = L2 ) (L1 ·X) is P-complete.

The equation (2a) uses complementation and intersection to specify Peirce’s
arrow as it is. There is another way of specifying the same condition, which
does not require the use of complementation. Instead of the variable X from
(2a), consider two variables, T and F (true and false), which correspond to
circuits evaluating to 1 and 0, respectively. Now the problem can be represented
as follows:

T = (a∗bF ∩ L0F ) ∪ ε (4a)
F = a∗bT ∪ L0T (4b)



A Simple P-Complete Problem and Its Representations 273

This is also a strict system, which has a unique solution (LT , LF ). Intersected
with the set of syntactically correct circuits, as in (2b, 3), LT and LF yield
exactly the sets of circuits that have value 1 and 0, respectively.

Hence the following variation of Theorem 1:

Theorem 2. There exists an LL(1) context-free language L0 ⊆ {a, b}+ (see
Theorem 1), such that both components of the unique solution of the system of
language equations (4) are P-complete languages.

Four completely formal representations of the circuit value problem have been
given. Let us use these representations to obtain succinct formal grammars for
the set of yes-instances of this problem. The first task is to specify the system
(4) as a conjunctive grammar.

5 Representation by a Conjunctive Grammar

Conjunctive grammars [11] were introduced by the author in 2000 and studied
in a series of papers [11,12,13]. These grammars are generalize the context-free
grammars by adding an explicit intersection operation, and despite a substan-
tial increase in the generative power, they inherit a number of their attractive
properties, most notably, some of the parsing algorithms.

A conjunctive grammar is a quadruple G = (Σ, N, P, S), where

– Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols;

– P is a finite set of rules, each of the form

A → α1& . . .&αn,

where A ∈ N , n � 1 and αi ∈ (Σ ∪N)∗;
– S ∈ N is a nonterminal designated as the start symbol.

For every rule A → α1& . . .&αn ∈ P and for every i (1 	 i 	 n), an object
A → αi is called a conjunct.

The semantics of conjunctive grammars is defined using term rewriting, which
generalizes the context-free derivation. The difference is in that the context-
free derivation operates with strings over Σ ∪ N (that is, terms over a single
associative operation, the concatenation), while the derivation in conjunctive
grammars uses terms over two operations, concatenation and conjunction.

These terms can be formally specified as strings over the alphabet Σ ∪ N ∪
{“(”, “)”, “&”} as follows:

1. ε is a term;
2. Every symbol from Σ ∪N is a term;
3. If A and B are terms, then AB is a term;
4. If A1, . . . , An (n � 1) are terms, then (A1& . . .&An) is a term.

Define the following term rewriting:



274 A. Okhotin

1. A subterm A can be replaced by the body of any rule for A. Using the string
representation of terms,

s1As2 =⇒ s1(α1& . . .&αn)s2 (5)

for all s1, s2 ∈ (Σ ∪ N ∪ {“(”, “)”, “&”})∗ and for every rule A → α1& . . .
&αn ∈ P . For the clarity of notation, let us assume that the parentheses are
omitted in case n = 1:

s1As2 =⇒ s1α1s2 (5′)

2. Conjunction of several identical terminal strings can be replaced by one such
string:

s1(w& . . . &w︸ ︷︷ ︸
n

)s2 =⇒ s1ws2 (6)

for all s1, s2 ∈ (Σ ∪N ∪ {“(”, “)”, “&”})∗, for all w ∈ Σ∗ and for all n � 1.

Let =⇒∗ be the reflexive and transitive closure of =⇒.
The language generated by a term A with respect to a grammar G can now

be defined as the set of all strings over Σ derivable from A in zero or more steps:

LG(A) = {w | w ∈ Σ∗, A =⇒∗ w} (7)

The language generated by a grammar is the set of all strings over its terminal
alphabet derivable from its start symbol: L(G) = LG(S).

The most important basic property of conjunctive grammars is their represen-
tation by language equations, which is a direct generalization of a similar prop-
erty of context-free grammars established by Ginsburg and Rice [4]. The system
of language equations associated with a conjunctive grammar G = (Σ, N, P, S)
uses the set N as the set of variables and, for each variable A ∈ N , there is the
following equation:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi

A solution of such a system is a vector of languages (. . . , C, . . .)C∈N , such that
the substitution of LC for C, for all C ∈ N , turns each equation into an equality.
Like in the context-free case, it is known that this system always has solutions,
and that among them there is a least one with respect to componentwise in-
clusion. This least solution is exactly the vector (. . . , LG(A), . . .)A∈N [12]. This,
in particular, shows that the conjunction operation in the rules of conjunctive
grammars indeed has the assumed semantics of intersection of languages.

Having recalled the definition of conjuctive grammars and their relationship
with language equations, we can now proceed to expressing the system (4) con-
structed Section 4. It is represented by the following small conjunctive grammar,

T → AbF&CF | ε
F → AbT | CT
A → aA | ε
C → aCAb | b



A Simple P-Complete Problem and Its Representations 275

in which the nonterminal C generates exactly the language (1) used in the equa-
tions (4). This establishes the following result:

Theorem 3. There exists an 8-rule conjunctive grammar that generates a P-
complete language.

A certain drawback of this grammar is that it is not LL(k) for any k, that is,
it cannot be used with the recursive descent parsing method for conjunctive
grammars [16]. The same applies to the previously known very large conjunctive
grammar for another P-complete language [13]: though it is linear, it is still not
LL(k). The question of whether there exists an LL(k) conjunctive grammar for
any P-complete language thus remains open.

In the following section it will be demonstrated that if a somewhat more
expressive family of grammars is used, then the accordingly generalized LL con-
dition can be met.

6 Representation by an LL(1) Boolean Grammar

Boolean grammars, introduced by the author in 2003 [15], are a generalization of
the context-free grammars that allows the use of all Boolean connectives in the
rules. In other words, Boolean grammars are a further extension of conjunctive
grammars that supports negation.

A Boolean grammar is a quadruple G = (Σ, N, P, S), where

– Σ and N are disjoint finite nonempty sets of terminal and nonterminal sym-
bols, respectively;

– P is a finite set of rules of the form

A → α1& . . .&αm&¬β1& . . .&¬βn, (8)

where m + n � 1, αi, βi ∈ (Σ ∪ N)∗; similarly to the case of conjunctive
grammars, A → αi is called a positive conjunct, while A → ¬βj is a negative
conjunct ;

– S ∈ N is the start symbol of the grammar.

The intuitive semantics of a Boolean grammar is clear: a rule (8) means that
every string w over Σ that satisfies each of the syntactical conditions represented
by α1, . . . , αm and none of the syntactical conditions represented by β1, . . . , βm

therefore satisfies the condition defined by A.
The formal semantics of Boolean grammars is defined using language equa-

tions similar to those used to characterize context-free and conjunctive grammars
[4,12]. The system of language equations associated with G uses N as its set of
variables, and the equation for each variable A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(9)



276 A. Okhotin

Assume that this system has a unique solution (. . . , LC , . . .)C∈N , and further
assume that for every finite language M ⊂ Σ∗ (such that for every w ∈ M
all substrings of w are also in M) there exists a unique vector of languages
(. . . , L(M)

C , . . .)C∈N (L(M)
C ⊆ M), such that a substitution of L

(M)
C for C, for

each C ∈ N , turns every equation (9) into an equality modulo intersection with
M . Then, for every A ∈ N , the language LG(A) is defined as LA, while the
language generated by the grammar is L(G) = LG(S). An alternative definition
of the semantics of Boolean grammars has been given by Kountouriotis et al.
[8], but it is known to be equivalent to this in power.

Let us now rewrite the language equation (2a) as a Boolean grammar:

S → ¬AbS&¬CS
A → aA | ε
C → aCAb | b

This grammar uses negation to specify Peirce’s arrow exactly as it is defined. It
also has another advantage over the conjunctive grammar for a similar language
given in the previous section: it can be used with the recursive descent parsing
[16]. The main condition is that whenever w ∈ L(X) for X ∈ {S, A, C}, the
rule for X which produces w is completely determined by the first symbol of
w. One small change has to be made to the above grammar in order to meet
the formal definition of an LL(1) Boolean grammar [16]: namely, the rule for S
should contain a positive conjunct. Then the grammar takes the following form:

S → E&¬AbS&¬CS
A → aA | ε
C → aCAb | b
E → aE | bE | ε

The following result can be stated:

Theorem 4. There exists a 5-rule Boolean grammar that generates a P-
complete language. The same language is generated by a 8-rule LL(1) Boolean
grammar.

Taking a closer look at the recursive descent parser for this grammar (see the
corresponding paper [16] for details), it is worth note that all branches of com-
putation of the procedure S() in the parser corresponding to this grammar ter-
minate at the end of the input, and hence all comparisons between pointers in
the parser’s code always hold true. Therefore, these checks become redundant
and can be removed from the generated program.

In this simplified form, the parser becomes similar to ad hoc extensions of
recursive descent parsing, such as the one recently proposed by Ford [2]. Viewing
specifications of those parsers as formalisms for language definition, we now see
that those formalisms are capable of expressing the same P-complete set in
exactly the same way as shown in this section.



A Simple P-Complete Problem and Its Representations 277

7 Conclusion

The new variant of the circuit value problem allows representing P-complete
sets using language equations and formal grammars of a fairly small size. It
is very likely that their size can be further reduced (for instance, from 5 to 4
rules in a Boolean grammar), or it can be reduced with respect to a different
descriptional complexity measure (e.g., by constructing a 5-rule 2-nonterminal
Boolean grammar); constructing such grammars could be a challenging exercise.

Let us mention two research problems left open in this paper. First, it remains
unknown whether there exists an LL(k) conjunctive grammar for any P-complete
problem. Another task is to construct a reasonably small and understandable
linear conjunctive grammar for any P-complete problem, as well as a trellis
automaton satisfying these criteria.

References

1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown au-
tomata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages,
vol. I, pp. 111–174. Springer, Heidelberg (1997)

2. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of POPL 2004, Venice, Italy, January 14–16, 2004, pp. 111–122
(2004)

3. Galil, Z.: Some open problems in the theory of computation as questions about two-
way deterministic pushdown automaton languages. Mathematical Systems The-
ory 10(3), 211–228 (1977) (Earlier version In: 15th Annual Symposium on Au-
tomata and Switching Theory (1974))

4. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of
the ACM 9, 350–371 (1962)

5. Goldschlager, L.M.: The monotone and planar circuit value problems are log space
complete for P. SIGACT News 9(2), 25–29 (1977)

6. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Oxford (1995)

7. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theoretical Computer Science 29, 123–153 (1984)

8. Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for
Boolean grammars. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 203–214. Springer, Heidelberg (2006)

9. Ladner, R.E.: The circuit value problem is log space complete for P. SIGACT
News 7(1), 18–20 (1975)

10. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

11. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

12. Okhotin, A.: Conjunctive grammars and systems of language equations. Program-
ming and Computer Software 28, 243–249 (2002)

13. Okhotin, A.: The hardest linear conjunctive language. Information Processing Let-
ters 86(5), 247–253 (2003)



278 A. Okhotin

14. Okhotin, A.: Decision problems for language equations with Boolean operations.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 239–251. Springer, Heidelberg (2003)

15. Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48
(2004)

16. Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica
(to appear)

17. Okhotin, A.: The dual of concatenation. Theoretical Computer Science 345(2-3),
425–447 (2005)

18. Okhotin, A.: Nine open problems for conjunctive and Boolean grammars. Bulletin
of the EATCS 91, 96–119 (2007)

19. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

20. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-
free languages. Journal of the ACM 22(4), 499–500 (1975)



Slightly Beyond Turing’s Computability for

Studying Genetic Programming

Olivier Teytaud

TAO, INRIA Futurs, LRI, UMR 8623 (CNRS - Univ. Paris-Sud),
olivier.teytaud@inria.fr

Abstract. Inspired by genetic programming (GP), we study iterative
algorithms for non-computable tasks and compare them to naive models.
This framework justifies many practical standard tricks from GP and also
provides complexity lower-bounds which justify the computational cost
of GP thanks to the use of Kolmogorov’s complexity in bounded time.

1 Introduction

Limits of Turing-computability are well-known [28,20]; many things of interest are
not computable. However, in practice, many people work on designing programs
for solving non-computable tasks, such as finding the shortest program perform-
ing a given task, or the fastest program performing a given task: this is the area
of genetic programming (GP) [9,13,15]. GP in particular provides many human-
competitive results
(http://www.genetic-programming.com/humancompetitive.html), and con-
tains 5440 articles by more than 880 authors according to the GP-bibliography [5].
GP is the research of a program realizing a given target-task roughly as follows:

1. generate (at random) an initial population of algorithms ;
2. select the ones that, after simulation, are “empirically” (details in the sequel)

themost relevant for the target-task (this isdependentof adistancebetween the
results of the simulation and the expected results, which is called the fitness) ;

3. create new programs by randomly combining and randomly mutating the
ones that remain in the population ;

4. go back to step 2.

Theoretically, the infinite-computation models [6] are a possible model for
studying programs beyond the framework of Turing Machines (TM). However,
these models are far from being natural: they are intuitively justified by e.g.
time steps with duration divided by 2 at each tick of the clock. We here work on
another model, close to real-world practice like GP: iterative programs. These
programs iteratively propose solutions, and what is studied is the convergence of
the iterates to a solution in ≡f with good properties (speed, space-consumption,
size), and not the fact that after a finite time the algorithm stops and proposes
a solution. The model, termed iterative model, is presented in algorithm 1. We
point out that we can’t directly compare the expressive power of our model and

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 279–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.genetic-programming.com/humancompetitive.html


280 O. Teytaud

the expressive power of usual models of computation; we here work in the frame-
work of symbolic regression. Classically, programs work with a program as input,
and output something (possibly a program). Here, the input can be a program,
but it can also be made of black-box examples provided by an oracle. Therefore,
we study algorithms with: (i) inputs, provided by an oracle (precisely, the or-
acle provides examples (xi, f(xi))); (ii) possibly, an auxiliary input, which is a
program computing f ; (iii) outputs, which are programs supposed to converge
to the function f underlying the oracle and satisfying some constraints (e.g.
asymptotically optimal size or asymptotically optimal speed). This is symbolic
regression. We can encode decision problems in this framework (e.g., deciding if
∀n, f(n) = 1 by using xi independent and ∀n ∈ N, P (xi = n) > 0); but we can
not encode the problems as above as decision problems or other classical families
of complexity classes. However, the links with various Turing degrees might be
studied more extensively than in this paper.

Algorithm 1. GP - Iterative-algorithms
Set p = 1.
while true do

Read an input Ip = (xp, yp) with yp = f(xp) on an oracle-tape.
Perform standard computations of a TM (allowing reading and writing on an
internal tape).
Output some Op.
p ← p + 1

end while

This model is the direct translation of genetic programming in a Turing-like
framework. A different approach consists in using also f as input. Of course,
in that case, the important point is that Op is “better” than f (faster, more
frugal in terms of space-consumption, or smaller). We will see that at least in
the general framework of f Turing-computable, the use of f as an input (as in
algo. 2), and not only as a black-box (as in 1), is not so useful (theorem 3).

We will in particular consider the most standard case, namely symbolic regres-
sion, i.e. inputs I1, . . . , Ip, . . . that are independently identically distributed on
N×N according to some distribution. We assume that there exists some f such that
with probability 1, ∀i, f(xi) = yi. Inputs are examples of the relation f (see e.g.
[29,10] for this model). The goal is that Op converges, in some sense (see theorem 2
for details), to f . We will in particular study cases in which such a convergence can
occur whereas without iterations f can not be built even with a black-box com-
puting f as oracle; we will therefore compare the framework above (alg. 1) and
the framework below (alg. 3). We point out that in algo. 3 we allow the program
to both (i) read f on the input tape (ii) read examples (xi, yi) with yi = f(xi).
(i) allows automatic optimization of code and (ii) allows the use of randomized
x. In cases in which (i) is allowed, what is interesting is the convergence to some
g ≡ f such that g is in some sense “good” (frugal in terms of space or time). In
contrast, algorithm 1 only uses examples. We will see that in the general case of
Turing-computable functions f , this is not a big weakness (th. 3).



Slightly Beyond Turing’s Computability for Studying Genetic Programming 281

Algorithm 2. Iterative-algorithms using more than a black-box.
Set p = 1.
Read an input f (this is not black-box!).
while true do

Read an input Ip = (xp, yp) with yp = f(xp) on an oracle-tape1.
Perform standard computations of a TM (allowing reading and writing on an
internal tape).
Output some Op (there are therefore infinitely many outputs, but each of them
after a finite time).
p ← p + 1

end while

Algorithm 3. Finite-time framework.
Possibly read f on the input tape (if yes, this is not black-box).
Set p = 1.
while Some computable criterion do

Possibly read an input Ip = (xp, yp) on the input tape.
Perform standard computations of a TM (allowing reading and writing on an
internal tape).
p ← p + 1

end while
Output some O.

In this spirit, we compare baseline standard (already known) results derived
from recursion theory applied to finite-time computations (algo. 3), and results
on iterative algorithms derived from statistics and optimization in a spirit close to
GP (algo. 1). Interestingly, we will have theoretically-required assumptions close
to the practice of GP, in particular (i) penalization and parsimony [26,30,16,17],
related to the bloat phenomenon which is the unexpected increase of the size of
automatically generated programs ([11,1,14,22,19,27,2,12]), and (ii) necessity of
simulations (or at least of computations as expensive as simulations, see th. 3 for
precise formalization of this conclusion). We refer to standard programs as ”finite-
time algorithms” (alg. 3), in order to emphasize the difference with iterative al-
gorithms. Finite-time algorithms take something as input (possibly with infinite
length), and after a finite-time (depending upon the entry), give an output. They
are possibly allowed to use an oracle which provide 2-uples (xi, yi) with the xi’s
i.i.d and yi = f(xi). This is usually what we call an ”algorithm”. The opposite con-
cept is iterative algorithms, which take something as input, and during an infinite
time provide outputs, that are e.g. converging to the solution of an equation. Of
course, the set of functions that are computable in finite time is included in (and
different from) the set of functions that are the limit of iterative algorithms (see
also [21]). The (time or space) complexity of iterative algorithms is the (time or
space) complexity of one computation of the infinite loop with one entry and one
output. Therefore, there are two questions quantifying the overall complexity: the
convergence rate of the outputs to a nice solution, and the computation time for
each run through the loop. We study the following questions about GP:



282 O. Teytaud

– What is the natural formalism for studying GP ? We propose the algorithm 1
as a Turing-adapted-framework for GP-analysis.

– Can GP paradigms (algo. 1) outperform baseline frameworks (algo. 3) ?
We show in theorem 2, contrasted with standard non-computability results
summarized in section 3, that essentially the answer is positive.

– Can we remove the very expensive simulations from GP ? Theorem 3 essen-
tially shows that simulation-times can not be removed.

2 Framework and Notations

We consider TM [28,20] with:

– one (read-only) binary input tape, where the head moves right if and only if
the bit under the reading head has been read;

– one internal binary tape (read and write, without any restriction on the
allowed moves);

– one (write-only) output binary tape, which moves of one and only one step
to the right at each written bit.

The restrictions on the moves of the heads on the input and on the output tapes
do not modify the expressive power of the TMs as they can simply copy the
input tape on the internal tape, work on the internal tape and copy the result
on the output tape. TM are also termed programs. If x is a program and e an
entry on the input tape, then x(e) is the output of the application of x to the
entry e. x(e) =⊥ is the notation for the fact that x does not halt on entry e.
We also let ⊥ be a program such that ∀e;⊥ (e) =⊥. A program p is a total
computable function if ∀e ∈ N; p(e) �=⊥ (p halts on any input). We say that two
programs x and y are equivalent if and only if ∀e ∈ N; x(e) = y(e). We denote
this by x ≡ y. We let ≡y= {x; x ≡ y}.

All tapes’ alphabets are binary. These TM can work on rational numbers,
encoded as 2-uples of integers. Thanks to the existence of Universal TM, we
identify TM and natural numbers in a computable way (one can simulate the
behavior of the TM of a given number on a given entry in a computable manner).
We let < x1, . . . , xn > be a n-uple of integers encoded as a unique number thanks
to a given recursive encoding.

We use capital letters for programming-programs, i.e. programs that are
aimed at outputting programs. There is no formal definition of a programming-
program; the output can be considered as an integer; we only use this difference
for clarity. A decider is a total computable function with values in {0, 1}. We
denote by D the set of all deciders. We say that a function f recognizes a set
F among deciders if and only if ∀e; (e ∈ F ∩ D → f(e) = 1 and e ∈ D \ F →
f(e) = 0) (whatever may be the behavior, possibly f does not halt on e i.e.
f(e) =⊥, for e �∈ D). We let 1 = {p; ∀e, p(e) = 1}, the set of programs always
returning 1. The definition of the size |x| of a program x is any usual definition
such that there are at most 2l programs of size ≤ l. The space complexity is with
respect to the internal tape (number of visited elements of the tape) plus the



Slightly Beyond Turing’s Computability for Studying Genetic Programming 283

size of the program. We let (with a small abuse of notation as it depends on f
and x and not only on f(x)) time(f(x)) (resp. space(f(x))) be the computation
time (resp. the space complexity) of program f on entry x. E is the expecta-
tion operator. Proba(.) is the probability operator ; by abuse, depending on the
context, it is sometimes with respect to (x, y) and sometimes with respect to a
sample (x1, x2, . . . , xm, y1, y2, . . . , ym). Iid is a short notation for ”independent
identically distributed”.

Section 3 presents non-computability results for finite-time algorithms.
Section 4 which shows positive results for GP-like iterative algorithms. Section
5 studies the complexity of iterative algorithms. Section 6 concludes.

3 Standard Case: Finite Time Algorithms

We consider the existence of programs P (.) such that when the user provides x,
which is a Turing-computable function, the program computes P (x) = y, where
y ≡ x and y is not too far from being optimal (for size, space or time). It is
known that for reasonable formalizations of this problem, such programs do not
exist. This result is a straightforward extension of classical non-computability
examples (the classical case is C(a) = a, we slightly extend this case for the sake
of comparison with usual terminology in learning or genetic programming and
in order to make the paper self-contained).

Theorem 1 (Undecidability). Whatever may be the function C(.) in NN,
there does not exist P such that for any total function x, P (x) is equivalent
to x and P (x) has size |P (x)| ≤ C(infy≡x |y|).

Moreover, for any C(.), for any such non-computable P (.), there exists a TM
using P (.) as oracle, that solves a problem in 0′, the jump of the set of computable
functions.

Due to length constraints, we do not provide the proof of this standard result;
but the proof is sketched in remark 1. We also point out without proof that
using a random generator does not change the result:

Corollary 1 (No size optimization). Whatever may be the function C(.),
there does not exist any program P , even possibly using a random oracle providing
independent random values uniformly distributed in {0, 1} such that for any total
function x, with probability at least 2/3, P (x) is equivalent to x and P (x) has
size |P (x)| ≤ C(infy≡x |y|).

The extension from size of programs to time complexity of programs requires
a more tricky formulation than a simple total order relation ”is faster than” ;
a program can be faster than another for some entries and slower for some
others. A natural requirement is that a program that suitably works provides a
(at least nearly) Pareto-optimal program [18], i.e. a program f such that there’s
no program that is as fast as f for all entries, and better than f for some specific
entry, at least within a tolerance function C(.). The precise formulation that



284 O. Teytaud

we propose is somewhat tricky but indeed very general; once again, we do not
include the proof of this result (the proof is straightforward from standard non-
computability result):

Corollary 2 (Time complexity). Whatever may be the function C(.), there
does not exist any program P , even possibly using a random oracle providing
independent random values uniformly distributed in {0, 1}, such that for any
total function x, with probability at least 2/3,

P (x) ≡ x and there’s no y ≡ x such that y Pareto-dominates P (x) (in time
complexity) within C(.), i.e. �y ∈≡x such that

∀z; time(P (x)(z)) ≥ C(time(y(z)))
and ∃z; time(P (x)(z)) > C(time(y(z)))

The result is also true when restricted to x such that a Pareto-optimal function
exist.

After size (corollary 1) and time (corollary 2), we now consider space complexity
(corollary 3). The proof in the case of space complexity relies on the fact that
we include the length of programs in the space complexity.

Corollary 3 (Space complexity). Whatever may be the function C(.), there
does not exist any program P , even possibly using a random oracle providing
independent random values uniformly distributed in {0, 1}, such that for any
total function x, with probability at least 2/3,

P (x) ≡ x and there’s no y ≡ x such that y dominates P (x) (in space com-
plexity) within C(.), i.e., � ∃y, y ≡ x and

∀z; space(P (x)(z)) ≥ C(space(y(z)))

and ∃z; space(P (x)(z)) > C(space(y(z)))

Remark 1 (Other fitnesses and sketch of the proofs). We have stated the non-
computability result for speed, size and space. Other fitnesses (in particular,
mixing these three fitnesses) lead to the same result. The key of the proofs above
(th. 1, corollaries 1, 2, 3) is the recursive nature of sets of functions optimal for
the given fitness, for at least the 1-class of programs, which is a very stable
feature. In results above, the existence of P , associated to this recursiveness in
the case of 1, shows the recursive nature of 1, what is a contradiction.

4 Iterative Algorithms

We recalled in section 3 that finite-time algorithms have deep limits. We now
show that to some extent, such limitations can be overcome by iterative al-
gorithms. The following theorem deals with learning deterministic computable
relations from examples.



Slightly Beyond Turing’s Computability for Studying Genetic Programming 285

Theorem 2. Assume that y = f(x) where f is computable and Proba(f(x) =⊥)
= 0 (with probability 1, f halts on x) and Etime(f(x)) < ∞. Assume that
(x1, y1), . . . , (xm, ym) is an iid (independently identically distributed) sample with
the same law as (x, y). We denote ACTm(g) = 1

m

∑m
i=1 T ime(g(xi)) and c(a, b)

any computable function, increasing as a function of a ∈ Q and increasing as a
function of b ∈ N, such that lima→∞ c(a, 0) = limb→∞ c(0, b) = ∞. We let

fm = P (< x1, . . . , xm, y1, . . . , ym >) (1)

and suppose that almost surely in the xi’s, ∀i; fm(xi) = yi (2)

and suppose that fm is minimal among functions satisfying eq. 2 for criterion

c(ACTm(fm), |fm|). (3)

Then, almost surely in the xi’s, for m sufficiently large

Proba(P (< x1, . . . , xm, y1, . . . , ym >)(x) �= y) = 0. (4)

Moreover, c(Etime(fm(x)), |fm|) converges to the optimal limit:

c(Etime(fm(x)), |fm|) → inf
f ;Proba(f(x) �=y)=0

c(Etime(fm(x)), |f |) (5)

and there exists a computable P computing fm optimal for criterion 3 and sat-
isfying eq. 2.

Proof:
The computability of fm is established by the following algorithm:

1. Build a naive function h such that h terminates on all entries and ∀i ∈
[[1, m]], h(xi) = yi (simply the function h that on entry x checks x = xi and
replies yi if such an x is found).

2. Consider a such that c(a/m, 0) ≥ c(ACTm(h), |h|) and b such that c(0, b) ≥
c(ACTm(h), |h|).

3. Define G as the set of all functions g with size ≤ b.
4. Set G′ = G \ G′′, where G′′ contains all functions in G such that g(xi) is

not computed in time a or g(xi) �= yi.
5. Select the best function in G′ for criterion c(ACTm(g), |g|).
Any satisfactory fm is in G and not in G′′ and therefore is in G′; therefore

this algorithms finds g in step 5.

We now show the convergence in eq. 5 and equation 4:

1. Let f∗ be an unknown computable function such that Proba(f∗(x) �= y) = 0,
with Etimef∗(x) minimal.

2. The average computation time of f∗ on the xi converges almost surely (by
the strong law of large numbers). Its limit is dependent of the problem ; it is the
expected computation time Ef∗(x) of f∗ on x.

3. By definition of fm and by step 2, fm = P (< x1, . . . , xm, y1, . . . , ym >) is
such that c(ACTm(fm), |fm|) is upper bounded by c(ACTm(f∗), |f∗|), which is



286 O. Teytaud

itself almost surely bounded above as it converges almost surely (Kolmogorov’s
strong law of large numbers [7]).

4. Therefore, fm, for m sufficiently large, lives in a finite space of computable
functions {f ; c(0, |f |) ≤ c(supi ACTi(f∗), |f∗|)}.

5. Consider g1, . . . , gk this finite family of computable functions.
6. Almost surely, for any i ∈ [[1, k]] such that Proba(gi(x) �= y) > 0, there

exists mi such that gi(xmi) �= ymi . These events occur simultaneously as a finite
intersection of almost sure events is almost sure ; so, almost surely, these mi all
exist.

7. Thanks to step 6, almost surely, for m > supi mi, Proba(fm(x) �= y) = 0.
8. Combining 5 and 7, we see that fm ∈ argminG c(ACTm(g), |g|) where

G = {gi; i ∈ [[1, k]] and Proba(gi(x) �= y) = 0}.
9. c(ACTm(gi), |gi|) → c(Etime(gi(x)), |gi|) almost surely for any i ∈ [[1, k]]∩

{i; Etime(gi(x)) < ∞} as c(., .) is continuous with respect to the first variable
(Kolmogorov’s strong law of large numbers). As this set of indexes i is finite,
this convergence is uniform in i.

10. c(ACTm(gi), |gi|) →∞ uniformly in i such that Etime(gi(x)) = ∞ as this
set is finite.

11. Thanks to steps 9 and 10, c(Etime(fm(x)), |fm|) → infg;Proba(g(x) �=y)=0 c
(Etime(g(x)), |g|). �

5 Complexity

We recalled above that finite time algorithms could not perform some given
tasks (theorem 1, corollaries 1,2,3, remark 1). We have also shown that itera-
tive methods combining size and speed are Turing-computable (theorem 2) and
converge to optimal solutions. The complexity of Turing-computable programs
defined therein (in theorem 2) is mainly the cost of simulation. We now show
that it is not possible to avoid the complexity of simulation. This emphasizes
the necessity of simulation (or at least, of computations with the same time-
cost as simulation) for automatic programming in Turing spaces. Kolmogorov’s
complexity was introduced by Solomonov ([24]) in the field of artificial intelli-
gence. Some versions include bounds on resource’s ([24,25,8]), in particular on
the computation-time ([3,4,23]):

Definition 1 (Kolmogorov’s complexity in bounded time). An integer
x is T ,S-complex if there is no TM M such that M(0) = x ∧ |M | ≤ S ∧
time(M(0)) ≤ T .

Consider an algorithm A deciding whether an integer x is T , S-complex or
not. Define C(T, S) the worst-case complexity of this algorithm (C(T, S) =
supx time(A(< x, T, S >))). C(T, S) implicitly depends on A, but we drop the de-
pendency as we consider a fixed ”good” A. Let’s see ”good” in which sense; there
is some A which is ”good” in the sense that with this A, ∀T, S, C(T, S) < ∞.
This is possible as for x sufficiently large, x is T ,S-complex, whatever may be
its value; A does not have to read x entirely.



Slightly Beyond Turing’s Computability for Studying Genetic Programming 287

These notions are computable, but we will see that their complexity is large,
at least larger than the simulation-parts. The complexity of the optimization of
the fitness in theorem 4 is larger than the complexity C(., .) of deciding if x is
T ,S-complex ; therefore, we will lower bound C(., .).

Lemma 1 (The complexity of complexness). Consider now Tn and Sn =
O (log(n)), computable increasing sequences of integers computable in time Q(n)
where Q is polynomial. Then there exists a polynomial G(.) such that

C(Tn, Sn) > (Tn −Q(n))/G(n),

and in particular if Tn is Ω(2n), C(Tn, Sn) >
Tn

P (n)
where P (.) is a polynomial.

Essentially, this lemma shows that, within polynomial factors, we can not get
rid of the computation time Tn when computing Tn, Sn-complexity. The proof
follows the lines of the proof of the non-computability of Kolmogorov’s complex-
ity by the so-called ”Berry’s paradox”, but with complexity arguments instead
of computability arguments. In short, we will use yn, the smallest number that
is ”hard to compute”.

Proof: Let yn be the smallest integer that is Tn,Sn-complex.
Step 1: yn is Tn,Sn-complex, by definition.
Step 2: But it is not Q(n) + yn ×C(Tn, Sn), C + D log2(n)-complex, where C

and D are constants, as it can be computed by (i) computing Tn and Sn (in time
Q(n)) (ii) iteratively testing if k is Tn, Sn-complex, where k = 1, 2, 3, . . . , yn (in
time yn × C(Tn, Sn).

Step 3: yn ≤ 2Sn , as: (i) there are at most 2Sn programs of size ≤ Sn, (ii)
therefore there are at most 2Sn numbers that are not Tn, Sn-complex. (iii) there-
fore, at least one number in [[0, 2Sn ]] is Tn, Sn-complex.

Step 4: if Sn = C + D log2(n), then yn is upper bounded by a polynomial
G(n) (thanks to step 3).

Step 5: combining steps 1 and 2, ynC(Tn, Sn) > Tn −Q(n).
Step 6: using step 4 and 5, C(Tn, Sn) > (Tn−Q(n))/G(n), hence the expected

result. �

Consider now the problem Pn,x of solving in f the following inequalities:

T ime(f(0)) ≤ Tn, |t| ≤ Sn, f(0) = x

Theorem 3 below shows that we can not get rid of the computation-time Tn,
within a polynomial. This shows that using f in e.g. algo. 2 does not save up
the simulation time that is requested in algorithm 4.

Theorem 3. If Tn = Ω(2n) and Sn = O(log(n)) are computable in polynomial
time from n, then there exists polynomials P (.) and F (.) such that

– for any n and x, algorithm 4 solves problem Pn,x with computation-time at
most TnF (n);



288 O. Teytaud

– there’s no algorithm solving Pn,x for any n and x with computation-time at
most Tn/P (n).

Proof: The computation time of algorithm 4 is straightforward. If an algorithm
solves Pn,x for any x with computation-time at most Tn/P (n), then this algo-
rithm decides if x is Tn,Sn-complex in time at most Tn/P (n), which contradicts
lemma 1 if P (n) is bigger than the polynomial of lemma 3. �

Algorithm 4. Algorithm for finding a program of size ≤ S and computation
time ≤ T generating x.

for f of size ≤ S do
Simulate T steps of f on entry 0.
if output = x then

Return f
Break

end if
end for
Return ”no solution”.

6 Conclusion

The iterative-model (algo. 1) is relevant for modeling GP in the sense that (i)
it is very natural, as genetic programming tools work iteratively (ii) it reflects
parsimony pressure (iii) by the use of Kolomogorov’s complexity with bounded
time, one can show that simulation as in genetic programming is necessary (at
least the computation-time of simulation is necessary). (ii) and (iii) are typically
formal elements in favor of genetic programming. Let’s now sum up and compare
our results, to see the relevance with the state of the art in genetic programming:

– In corollaries 1, 2, 3 we have shown that finite-time programming-programs
can not perform the required task, i.e. finding the most efficient function in
a space of Turing-equivalent functions. This, contrasted with th. 2, shows
that algorithms as algo. 1 definitely can compute things that can not be
computed by algorithms as algo 3.

– In theorem 2, we have shown that an iterative programming-program could
asymptotically perform the required target-tasks, namely satisfying simul-
taneously (i) consistency, i.e. fm(x) = y with probability 1 on x and y as
shown in eq. 4; (ii) good compromise between size and speed, as shown in
eq. 5. Interestingly, we need parsimony pressure in theorem 2 (short pro-
grams are preferred); parsimony pressure is usual in GP. This is a bridge
between mathematics and practice. This leads to the conclusion that algo.
1 has definitely a larger computational power than algo. 3.

– The main drawback of GP is that GP is slow, due to huge computational
costs, as a consequence of intensive simulations during GP-runs; but anyway
one can not get rid of the computation time. In theorem 3, using a modified
form of Kolmogorov’s complexity, we have shown that getting rid of the



Slightly Beyond Turing’s Computability for Studying Genetic Programming 289

simulation time is anyway not possible. This shows that the fact that f is
not directly used, but only black-box-calls to f , in algo. 1, is not a strong
weakness (at least within some polynomial on the computation time).

This gives a twofold theoretical foundation to GP, showing that (i) simulation +
selection as in th. 2 outperforms any algorithm of the form of algo. 3 (ii) getting
rid of the simulation time is not possible, and therefore using algo. 2 instead of
1 will not “very strongly” (more than polynomially) reduce the computational
cost. Of course, this in the case of mining spaces of Turing-computable functions;
in more restricted cases, with more decidability properties, the picture is very
different. Refining comparisons between algorithms 1, 2, 3, is for the moment
essentially an empirical research in the case of Turing-computable functions,
termed genetic programming. The rare mathematical papers about genetic pro-
gramming focus on restricted non-Turing-computable cases, whereas the most
impressive results concern Turing-computable functions (also in the quantum
case). This study is a step in the direction of iterative-Turing-computable mod-
els as a model of GP.

References

1. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genetic
Programming and Evolvable Machines 3(1), 81–91 (2002)

2. Blickle, T., Thiele, L.: Genetic programming and redundancy. In: Hopf, J. (ed.)
Genetic Algorithms Workshop at KI-94. Max-Planck-Institut für Informatik, pp.
33–38 (1994)

3. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded kolmogorov complexity
revisited. SIAM Journal on Computing (2001)

4. Fortnow, L., Kummer, M.: Resource-bounded instance complexity. Theoretical
Computer Science A 161, 123–140 (1996)

5. Gustafson, S.M., Langdon, W., Koza, J.: Bibliography on genetic programming.
In: The Collection of Computer Science Bibliographies (2007)

6. Hamkins, J.D.: Infinite time turing machines. Minds Mach. 12(4), 521–539 (2002)
7. Khintchine, A.Y.: Sur la loi forte des grands nombres. Comptes Rendus de

l’Academie des Sciences, 186 (1928)
8. Kolmogorov, A.N.: Logical basis for information theory and probability theory.

IEEE trans. Inform. Theory IT-14, 662–664 (1968)
9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA (1992)
10. Lugosi, G., Devroye, L., Györfi, L.: A probabilistic theory of pattern recognition.

Springer, Heidelberg (1997)
11. Langdon, W.B.: The evolution of size in variable length representations. In:

ICEC’98, pp. 633–638. IEEE Computer Society Press, Los Alamitos (1998)
12. Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Koza, J. (ed.) Late

Breaking Papers at GP’97, Stanford Bookstore, pp. 132–140 (1997)
13. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidel-

berg (2002)
14. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape.

In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P. (eds.) Advances in
Genetic Programming III, pp. 163–190. MIT Press, Cambridge (1999)



290 O. Teytaud

15. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! April 24, 1998. Genetic Program-
ming, vol. 1. Kluwer, Boston (1998)

16. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Langdon, W.B., et al.
(eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 829–836. Morgan Kaufmann Publishers, San Francisco (2002)

17. Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Eshelman,
L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), Pittsburgh, PA, USA, July 15-19, 1995, pp. 310–317. Morgan Kauf-
mann, San Francisco (1995)

18. Pareto, V.: Manuale d’Economia Politica. Società Editrice, Libraria, Milano (1906)
19. Ratle, A., Sebag, M.: Avoiding the bloat with probabilistic grammar-guided genetic

programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M.
(eds.) EA 2001. LNCS, vol. 2310, Springer, Heidelberg (2002)

20. Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill,
New York (1967)

21. Schmidthuber, J.: Hierarchies of generalized kolmogorov complexities and nonenu-
merable universal measures computable in the limit. International Journal of Foun-
dations of Computer Science 13(4), 587–612 (2002)

22. Silva, S., Almeida, J.: Dynamic maximum tree depth: A simple technique for avoid-
ing bloat in tree-based gp. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy,
R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., We-
gener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N.,
Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1776–1787.
Springer, Heidelberg (2003)

23. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th ACM Symposium on the Theory of Computing, pp. 330–335. ACM Press,
New York (1983)

24. Solomonoff, R.: A formal theory of inductive inference, part 1. Inform. and Con-
trol 7(1), 1–22 (1964)

25. Solomonoff, R.: A formal theory of inductive inference, part 2. Inform. and Con-
trol 7(2), 222–254 (1964)

26. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-
tions in genetic programming. Evolutionary Computation 6(4), 293–309 (1998)

27. Soule, T.: Exons and code growth in genetic programming. In: Foster, J.A., Lutton,
E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278,
pp. 142–151. Springer, Heidelberg (2002)

28. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. In: Proceedings of the London Mathematical Society, vol. 2, 45, pp. 161–228
(reprinted in Davis, M.: The Undecidable, pp. 155-222, Raven Press, Ewlett, NY
(1965)) (1936-1937)

29. Vapnik, V.: The nature of statistical learning. Springer, Heidelberg (1995)
30. Zhang, B.-T., Muhlenbein, H.: Balancing accuracy and parsimony in genetic pro-

gramming. Evolutionary Computation 3(1), 17–38 (1995)



A Smallest Five-State Solution to the Firing

Squad Synchronization Problem

Hiroshi Umeo and Takashi Yanagihara

Univ. of Osaka Electro-Communication,
Neyagawa-shi, Hastu-cho, 18-8, Osaka, 572-8530, Japan

{umeo,yanagihara}@cyt.osakac.ac.jp

Abstract. An existence or non-existence of five-state firing squad syn-
chronization protocol has been a long-standing, famous open problem
for a long time. In this paper, we answer partially to this problem by
proposing a smallest five-state firing squad synchronization algorithm
that can synchronize any one-dimensional cellular array of length n = 2k

in 3n−3 steps for any positive integer k. The number five is the smallest
one known at present in the class of synchronization protocols proposed
so far.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as a firing squad synchronization problem since its
development, in which it was originally proposed by J. Myhill in Moore [1964]
to synchronize all parts of self-reproducing cellular automata. The firing squad
synchronization problem has been studied extensively for more than 40 years
[1-15]. The optimum-time (i.e., (2n − 2)-step ) synchronization algorithm was
devised first by Goto [1962] for one-dimensional array of length n. The algo-
rithm needed many thousands of internal states for its realization. Afterwards,
Waksman [1966], Balzer [1967], Gerken [1987] and Mazoyer [1987] developed an
optimum-time algorithm and reduced the number of states realizing the algo-
rithm, each with 16, 8, 7 and 6 states. On the other hand, Balzer [1967], Sanders
[1994] and Berthiaume et al. [2004] have shown that there exists no four-state
synchronization algorithm. Thus, an existence or non-existence of five-state firing
squad synchronization protocol has been a long-standing, famous open problem
for a long time.

In this paper, we answer partially to this problem by proposing a smallest
five-state firing squad synchronization algorithm that can synchronize any one-
dimensional cellular array of length n = 2k in 3n − 3 steps for any positive
integer k. The number five is the smallest one known at present in the class of
synchronization protocols proposed so far. Due to the space availability we only
give informal descriptions of the five-state solution.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 291–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



292 H. Umeo and T. Yanagihara

C1 C2 C3 C4 Cn

Fig. 1. A one-dimensional cellular automaton

2 Firing Squad Synchronization Problem

2.1 Firing Squad Synchronization Problem

G
t = 0

t = 3n+α

t = 
2

3n

G2 GG2

G1

t = n-1

t = 2n-2

. . . . n

GG33G3G3GG3

1  2 3 . . . .

1/1

1/1

1/3

1/3

1/1

1/3

a-signal

b-signal

r-signall1/1

Fig. 2. A time-space diagram for 3n-
step firing squad synchronization algo-
rithms

Figure 1 shows a finite one-dimen-
sional cellular array consisting of n
cells. Each cell is an identical (except
the border cells) finite-state automa-
ton. The array operates in lock-step
mode in such a way that the next state
of each cell (except border cells) is de-
termined by both its own present state
and the present states of its left and
right neighbors. All cells (soldiers), ex-
cept the left end cell (general), are ini-
tially in the quiescent state at time
t = 0 with the property that the next
state of a quiescent cell with quiescent
neighbors is the quiescent state again.
At time t = 0, the left end cell C1 is
in the fire-when-ready state, which is
the initiation signal for the array. The
firing squad synchronization problem
is to determine a description (state set
and next-state function) for cells that
ensures all cells enter the fire state at
exactly the same time and for the first
time. The set of states and the next-
state function must be independent of
n.

2.2 A Class of 3n-Step Synchronization Algorithms

The 3n-step algorithm that synchronizes n cells in 3n steps is an interesting
class of synchronization algorithms due to its simplicity and straightforwardness
and it is important in its own right in the design of cellular algorithms. Minsky
and MacCarthy [1967] gave an idea for designing the 3n-step synchronization
algorithm and Fischer [1965] implemented the 3n-step algorithm, yielding a 15-
state implementation. Afterwards, Yunès [1994] proposed a seven-state 3n-step
firing squad synchronization algorithm. Umeo et al. [2006] also proposed a six-
state 3n-step symmetrical synchronization algorithm.



A Smallest Five-State Solution to the Firing Squad Synchronization Problem 293

Figure 2 shows a time-space diagram for the well-known 3n-step firing squad
synchronization algorithm. The synchronization process can be viewed as a typ-
ical divide-and-conquer strategy that operates in parallel in the cellular space.
An initial ”General” G, located at left end of the array of size n, generates two
special signals, referred to as a-signal and b-signal, which propagate in the right
direction at a speed of 1/1 (i.e., 1 cell per unit step) and 1/3 (1 cell per three
steps), respectively. The a-signal arrives at the right end at time t = n − 1,
reflects there immediately, then continues to move at the same speed in the left
direction. The reflected signal is referred to as r-signal. The b- and r-signals meet
at a center cell(s), depending on the parity of n. In the case that n is odd, the cell
C�n/2� becomes a General at time t = 3*n/2+ − 2. The new General works for
synchronizing both its left and right halves of the cellular space. Note that the
General is shared by the two halves. In the case that n is even, two cells C�n/2�
and C�n/2�+1 become the next General at time t = 3*n/2+. Each General works
for synchronizing its left and right halves of the cellular space, respectively.

Thus at time

t =

{
3*n/2+ − 2 n: odd
3*n/2+ n: even,

(1)

the array knows its center point(s) and generates one or two new General(s) G1.
The new General(s) G1 generates the same 1/1- and 1/3-speed signals in both
left and right directions and repeat the same procedures as above. Thus, the
original synchronization problem of size n is divided into two sub-problems of
size *n/2+. In this way, the original array is split into equal two, four, eight, ...,
subspaces synchronously. In the last, the original problem of size n can be split
into small sub-problems of size 2. Most of the 3n-step synchronization algorithms
developed so far [3, 7, 12, 15] are based on similar schemes.

3 Five-State Synchronization Algorithm

In this section we present a five-state synchronization algorithm A for synchro-
nizing any cellular array of length n = 2k, where k is any positive integer. In
the design of the 3n-step synchronization algorithms, what is important is to
find a center cell(s) of the cellular space to be synchronized. It is noted that two
center cells can be always found at each iteration of centering processes in the
case where n = 2k. How can we implement those a-, b- and r-signals shown in
Fig. 2 as a four-state transition table? Note that the fifth firing state cannot
be used during the computation. First, we consider a special four-state cellular
automaton M0 with internal state set {Q, R, L, S} that can find center cells
of a given array, initially staring from a configuration such that: all of the cells,
excluding a left end cell, are in quiescent state Q and the left end cell is in a
special General state R. By constructing the transition rule sets step-by-step,
we show how to develop the final five-state synchronization protocol. The state
“*” that will appear in the state transition rules below is a border state for the



294 H. Umeo and T. Yanagihara

G
t = 0

0 R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 R R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 R R R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 R R R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 R R Q R R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 R Q R R R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q

11 R R R R Q R R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q

12 R R R Q R R R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q

13 R R Q R R R Q R R R Q R R R Q Q Q Q Q Q Q Q Q Q

14 R Q R R R Q R R R Q R R R Q R Q Q Q Q Q Q Q Q Q

15 R R R R Q R R R Q R R R Q R R R Q Q Q Q Q Q Q Q

16 R R R Q R R R Q R R R Q R R R Q R Q Q Q Q Q Q Q

17 R R Q R R R Q R R R Q R R R Q R R R Q Q Q Q Q Q

18 R Q R R R Q R R R Q R R R Q R R R Q R Q Q Q Q Q

19 R R R R Q R R R Q R R R Q R R R Q R R R Q Q Q Q

20 R R R Q R R R Q R R R Q R R R Q R R R Q R Q Q Q

21 R R Q R R R Q R R R Q R R R Q R R R Q R R R Q Q

22 R Q R R R Q R R R Q R R R Q R R R Q R R R Q R Q

3-step

1/1-speed

   signal

Ripple

drivers

Cellular space

Fig. 3. Time-space diagram for generating ripple drivers propagating in the left direc-
tion (left) and its two-state implementation (right)

left and right end cells. According to conventions, the border state “*” is not
counted in the number of states.

3.1 Two-State Implementation for Ripple Drivers

In this subsection first we give a two-state implementation of ripple drivers that
enable the propagation of the b-signal at 1/3 speed. The a-signal is also realized
within the two-state implementation. See Fig. 3. The General at the left end is
in state R and all other cells Ci, 2 ≤ i ≤ n, are in state Q at time t = 0. Those
quiescent cells keep the quiescent state with the rules: Q Q Q → Q; Q Q ∗ →
Q. At time t = 0 the General in state R generates an a-signal represented in state
R. The a-signal propagates in the right direction. A rule: R Q Q → R is used for
the generation of the a-signal and its propagation. At every two steps the a-signal
generates a 1/1 speed signal in state Q. The 1/1 speed signal is transmitted in
the reverse direction. Any cell in state R with a left neighbor in state R and
a right neighbor in Q takes a state Q with a rule: R R Q → Q. The state Q is
propagated in the left direction at 1/1 speed with the next two rules: R R Q →
Q; R Q R → R. This yields many ripple drivers (described later) propagating
toward its left end. Any cell that has received the a-signal keeps the R state
as long as no Q state in its right neighbor. The following four rules: Q R R →
R; Q R Q → R; ∗ R Q → R; ∗ R R → R are used for this purpose. The next
rule set r1 consisting of ten local rules given above is used for the generation
and propagation of the a-signal and generating ripple drivers. Figure 3 shows
the time-space diagram and its two-state implementation. Note that we need
no counter for the generation of ripple drivers that arrives at C1 at every three
steps.



A Smallest Five-State Solution to the Firing Squad Synchronization Problem 295

0 R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 S R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 S Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q S R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q S R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q S Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q S R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q S R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 Q Q S Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 Q Q Q S R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q S R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q Q Q

11 Q Q Q S Q R R R Q R R R Q Q Q Q Q Q Q Q Q Q Q Q

12 Q Q Q Q S R R Q R R R Q R Q Q Q Q Q Q Q Q Q Q Q

13 Q Q Q Q S R Q R R R Q R R R Q Q Q Q Q Q Q Q Q Q

14 Q Q Q Q S Q R R R Q R R R Q R Q Q Q Q Q Q Q Q Q

15 Q Q Q Q Q S R R Q R R R Q R R R Q Q Q Q Q Q Q Q

16 Q Q Q Q Q S R Q R R R Q R R R Q R Q Q Q Q Q Q Q

17 Q Q Q Q Q S Q R R R Q R R R Q R R R Q Q Q Q Q Q

18 Q Q Q Q Q Q S R R Q R R R Q R R R Q R Q Q Q Q Q

19 Q Q Q Q Q Q S R Q R R R Q R R R Q R R R Q Q Q Q

20 Q Q Q Q Q Q S Q R R R Q R R R Q R R R Q R Q Q Q

21 Q Q Q Q Q Q Q S R R Q R R R Q R R R Q R R R Q Q

22 Q Q Q Q Q Q Q S R Q R R R Q R R R Q R R R Q R Q

G
t = 0

1/3-speed

   signal

1/1-speed

   signal

Cellular space

Fig. 4. Time-space diagram for generating the 1/3 speed b-signal and its three-state
implementation

3.2 Three-State Implementation for a- and b-Signals

In this subsection, we show that three states suffice for the implementation of the
b-signal with 1/3 speed. The time separation of each consecutive ripple driver
is three-step. The b-signal is represented as a state S staying at a cell for three
steps. The b-signal on the leftmost cell C1 takes a state R, S, S in order for the
first three steps, i.e. at time t = 0, 1 and 2. Each ripple driver can be used to drive
the propagation of the b-signal to its right neighbor. The three-step separation
of two consecutive ripples enables the b-signal to propagate at 1/3 speed.

To implement the b-signal we first delete the next two rules from r1:

∗ R Q → R; ∗ R R → R;

which involve the state transition on C1, yielding the rule set r1′ . Then we add
the following rule set r2 to the rule set r1′ . A cell in state S keeps the state for
three steps and a ripple driver described above arrives at its right neighbour at
every three steps. Then at the next step the state S disappears from the cell
and its right neighbor cell takes the state S. In this way, the b-signal in state
S can be propagated at 1/3 speed in the right direction. Figure 4 (left) shows
the time-space diagram for the propagation of the b-signal and its three-state
implementation based on r1′ ∪ r2 is given in Fig. 4 (right). We omit the details
of each rule in r2, since it is easily seen with the help of those snapshots in
Fig. 4 (right) that which rule in r2 is used for the propagation of the b-signal.
Thus we can show that three states suffice for the generation and propagation of
the a- and b-signals. It is noted that any cell where the b-signal passes by keeps
the quiescent state again.



296 H. Umeo and T. Yanagihara

Table 1. The rule set r1 for generating ripple drivers

Q Q Q → Q; Q Q ∗ → Q; R Q Q → R; R Q R → R; Q R Q → R;
Q R R → R; R R Q → Q; R R R → R; ∗ R Q → R; ∗ R R → R.

Table 2. The rule set r2 for the generation and propagation of the b-signal

S Q R → S; ∗ Q Q → Q; ∗ Q S → Q; Q Q S → Q; S R Q → Q;
S R R → R; ∗ R Q → S; Q S Q → Q; Q S R → S; ∗ S Q → Q;

∗ S R → S.

3.3 Four-State Implementation for Searching Center Cells

The fourth state L is used for the reflected r-signal. The following rule set r3

includes rules for generation and propagation of the reflected signal. At time
t = n−1, the a-signal arrives at Cn and the reflected signal in state L is generated
at time t = n on Cn. The return signal propagates in the left direction at 1/1
speed. Any cell where the return signal passes by keeps a quiescent state. At
time t = 3n/2, the b-signal and the return signal meet on Cn/2 and Cn/2+1. At
the next step, the cells Cn/2 and Cn/2+1 take a state L and R with rules: S L
Q → R; Q S L → L. The state L and R act as a General for the left and right
half of the array, respectively. For these purposes we add the following rule set
r3 to the original rule set r1′ ∪ r2, thus yielding the rule set R0 =r1′ ∪ r2 ∪ r3.

Table 3. The rule set r3 for the return signal

R Q ∗ → R; R R ∗ → L; L Q Q → Q; L Q ∗ → Q; R R L → L;
S R L → L; R L Q → Q; R L ∗ → Q; S L Q → R; Q S L → L;

L R Q → S; S S R → S; S S Q → Q.

Let St
i denote the state of Ci at time t. The next state transition function R0

of M0, shown in Fig. 5, consists of four sub-tables for each state in {Q, R, L, S}.
Each state on the first row (column) indicates a state of right (left) neighbor
cell, respectively. Each entry of the sub-tables shows a state at the next step. In
general the border state ”*” is not counted as a number of states. We have the
following [Lemma 1] on finding a center of the given array.



A Smallest Five-State Solution to the Firing Squad Synchronization Problem 297

State Q 

Q R L S    *

Q Q Q Q

R R R R

L Q Q

S S

   * Q Q

Left\Right

Q R L S    *

Q Q S L

R

L

S Q S

   * Q S

State S

Left\Right

Q R L S    *

Q

R Q Q

L

S R

   *

State L

Left\Right

Q R L S    *

Q R R

R Q R L L

L S

S Q R L

   * S

State R

Left\Right

Fig. 5. A four-state tran-
sition table R0 for find-
ing center cells of cellular
arrays.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 S R Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 S Q R Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q S R R Q Q Q Q Q Q Q Q Q Q Q Q

4 Q S R Q R Q Q Q Q Q Q Q Q Q Q Q

5 Q S Q R R R Q Q Q Q Q Q Q Q Q Q

6 Q Q S R R Q R Q Q Q Q Q Q Q Q Q

7 Q Q S R Q R R R Q Q Q Q Q Q Q Q

8 Q Q S Q R R R Q R Q Q Q Q Q Q Q

9 Q Q Q S R R Q R R R Q Q Q Q Q Q

10 Q Q Q S R Q R R R Q R Q Q Q Q Q

11 Q Q Q S Q R R R Q R R R Q Q Q Q

12 Q Q Q Q S R R Q R R R Q R Q Q Q

13 Q Q Q Q S R Q R R R Q R R R Q Q

14 Q Q Q Q S Q R R R Q R R R Q R Q

15 Q Q Q Q Q S R R Q R R R Q R R R

16 Q Q Q Q Q S R Q R R R Q R R R L

17 Q Q Q Q Q S Q R R R Q R R R L Q

18 Q Q Q Q Q Q S R R Q R R R L Q Q

19 Q Q Q Q Q Q S R Q R R R L Q Q Q

20 Q Q Q Q Q Q S Q R R R L Q Q Q Q

21 Q Q Q Q Q Q Q S R R L Q Q Q Q Q

22 Q Q Q Q Q Q Q S R L Q Q Q Q Q Q

23 Q Q Q Q Q Q Q S L Q Q Q Q Q Q Q

24 Q Q Q Q Q Q Q L R Q Q Q Q Q Q Q

1 2 3 4 5 6 7 8
0 R Q Q Q Q Q Q Q
1 S R Q Q Q Q Q Q
2 S Q R Q Q Q Q Q
3 Q S R R Q Q Q Q
4 Q S R Q R Q Q Q
5 Q S Q R R R Q Q
6 Q Q S R R Q R Q
7 Q Q S R Q R R R
8 Q Q S Q R R R L
9 Q Q Q S R R L Q

10 Q Q Q S R L Q Q
11 Q Q Q S L Q Q Q
12 Q Q Q L R Q Q Q

Fig. 6. Snapshots for searching for center cells

[Lemma 1]. Let k be any positive integer such that k ≥ 2 and M0 be a four-state
cellular automaton of length n = 2k with the transition table R0. We assume
that M0 has an initial configuration such that:

1. S0
1 = L, S0

i = Q, 2 ≤ i ≤ n,

Then, M0 takes the following configuration at time t = 3n/2:

2. At time t = 3n/2,
St

n/2 = L, St
n/2+1 = R, St

i = Q, for any i such that 1 ≤ i ≤ n, i �= n/2, i �=
n/2 + 1.

Figure 6 shows how the cellular automaton M0 can find the center cells of the
cellular space using only four states. Thus the rules in R0 are used for searching
center cells of arrays in which a General R is stationed at its left end. To look for
center cells of arrays in which a General L is posted at its right end, we develop
the following rule set r4 based on the previous way. The a- and r-signals are



298 H. Umeo and T. Yanagihara

Table 4. The rule set r4 for finding center cells

Q Q L → L; Q L R → S; L S S → S; Q L S → Q; Q L Q → L;
L Q S → S; Q S S → Q; L S Q → S; S Q Q → Q; L L S → L;
Q L L → Q; L Q L → L; L L Q → L; L L L → L; ∗ Q L → L;
∗ L L → R; ∗ R L → Q; R L L → R; ∗ Q R → Q; Q R L → Q;
Q Q R → Q; R L S → R; Q R S → L; R S Q → R. R L R → Q;

L R L → Q; ∗ L S → R; S R ∗ → L.

represented by the state L and R, respectively. By letting R1 = R0 ∪ r4, we get
the next [Lemma 2].

[Lemma 2]. Let k be any positive integer such that k ≥ 2 and M1 be the
four-state cellular automaton of length n = 2k with the transition table R1. We
assume that M1 has an initial configuration such that:

1. S0
n/2 = L, S0

n/2+1 = R, S0
i = Q, for any i such that 1 ≤ i ≤ n, i �= n/2, i �=

n/2 + 1.

Then, M1 takes the following configuration at time t = 3n/4.

2. At time t = 3n/4, St
n/4 = L, St

n/4+1 = R, St
3n/4 = L, St

3n/4+1 = R, S0
i = Q, for

any i such that 1 ≤ i ≤ n, i �= n/4, i �= n/4 + 1, i �= 3n/4, i �= 3n/4 + 1.

3.4 Transition Rules for Synchronizing Small Subarrays of Length
n = 2

By using the halving [Lemma 1, 2] recursively, the original problem is reduced to
many small synchronization problems of size 2. In Fig. 8, we illustrate snapshots
for synchronizing an array of size 2. Each General in state L and R works for
synchronizing each left and right sub-arrays independently. Both of them can be
synchronized at exactly three steps. To synchronize them at exactly three steps,
we add the following seven rules:

3.5 Five-State Synchronization Protocol

A five-state cellular automaton M is defined as follows: The set of internal states
of M is {Q, L, R, S, F}, where Q is the quiescent state, R is the initial General
state and F is the firing state, respectively. In Fig. 9 we give our final transition
rule set R =R1 ∪ rf . Let T (n) be time complexity for synchronizing any array
of length n = 2k, for any integer k ≥ 1. Then we have:

T (n) =

{
T (n/2) + 3n/2 n = 2k, k ≥ 2,
3 n = 2.

(2)



A Smallest Five-State Solution to the Firing Squad Synchronization Problem 299

1 2 3 4 5 6 7 8 9 10111213141516

Q Q Q Q Q Q Q L R Q Q Q Q Q Q Q

Q Q Q Q Q Q L S S R Q Q Q Q Q Q

Q Q Q Q Q L Q S S Q R Q Q Q Q Q

Q Q Q Q L L S Q Q S R R Q Q Q Q

Q Q Q L Q L S Q Q S R Q R Q Q Q

Q Q L L L Q S Q Q S Q R R R Q Q

Q L Q L L S Q Q Q Q S R R Q R Q

L L L Q L S Q Q Q Q S R Q R R R

R L L L Q S Q Q Q Q S Q R R R L

Q R L L S Q Q Q Q Q Q S R R L Q

Q Q R L S Q Q Q Q Q Q S R L Q Q

Q Q Q R S Q Q Q Q Q Q S L Q Q Q

Q Q Q L R Q Q Q Q Q Q L R Q Q Q

0

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 7. Snapshots for searching for
center cells

t = 0

     1

     2

     3

size 2size 2

Q L R Q
L L R R
R S S L
F F F F

Fig. 8. Snapshots for synchronizing
an array of size 2

Q R L S    *

Q L S Q Q

R Q Q R R Q

L L L L

S R F F

   * R R

State L

Q R L S    *

Q Q S L Q

R R F

L S S

S Q S F

   * Q S F

State S

State Q 

Q R L S    *

Q Q Q L Q Q

R R R R

L Q L S Q

S Q S

   * Q Q L Q

Q R L S    *

Q R R Q L

R Q R L L

L S Q F

S Q R L L

   * S Q F

State R

Left\Right

Left\RightLeft\Right

Left\Right

Fig. 9. A state transition table R for the five-state 3n-step firing squad synchronization
algorithm A

Table 5. The rule set rf for synchronizing an array of lengh n = 2

∗ R S → F; R S S → F; S S L → F; S L R → F; L R S → F;
S L ∗ → F; ∗ S L → F.

The recurrence equation can be expressed as T (n) = 3n− 3. Thus we have:

[Theorem 3]. There exists a 5-state cellular automaton that can synchronize
any array of length n = 2k in 3n− 3 steps, where k is any positive integer.

Figure 10 shows snapshots for the 5-state firing squad synchronization algorithm
on 8 and 16 cells.



300 H. Umeo and T. Yanagihara

1 2 3 4 5 6 7 8 9 10111213141516

0 R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 S R Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 S Q R Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q S R R Q Q Q Q Q Q Q Q Q Q Q Q

4 Q S R Q R Q Q Q Q Q Q Q Q Q Q Q

5 Q S Q R R R Q Q Q Q Q Q Q Q Q Q

6 Q Q S R R Q R Q Q Q Q Q Q Q Q Q

7 Q Q S R Q R R R Q Q Q Q Q Q Q Q

8 Q Q S Q R R R Q R Q Q Q Q Q Q Q

9 Q Q Q S R R Q R R R Q Q Q Q Q Q

10 Q Q Q S R Q R R R Q R Q Q Q Q Q

11 Q Q Q S Q R R R Q R R R Q Q Q Q

12 Q Q Q Q S R R Q R R R Q R Q Q Q

13 Q Q Q Q S R Q R R R Q R R R Q Q

14 Q Q Q Q S Q R R R Q R R R Q R Q

15 Q Q Q Q Q S R R Q R R R Q R R R

16 Q Q Q Q Q S R Q R R R Q R R R L

17 Q Q Q Q Q S Q R R R Q R R R L Q

18 Q Q Q Q Q Q S R R Q R R R L Q Q

19 Q Q Q Q Q Q S R Q R R R L Q Q Q

20 Q Q Q Q Q Q S Q R R R L Q Q Q Q

21 Q Q Q Q Q Q Q S R R L Q Q Q Q Q

22 Q Q Q Q Q Q Q S R L Q Q Q Q Q Q

23 Q Q Q Q Q Q Q S L Q Q Q Q Q Q Q

24 Q Q Q Q Q Q Q L R Q Q Q Q Q Q Q

25 Q Q Q Q Q Q L S S R Q Q Q Q Q Q

26 Q Q Q Q Q L Q S S Q R Q Q Q Q Q

27 Q Q Q Q L L S Q Q S R R Q Q Q Q

28 Q Q Q L Q L S Q Q S R Q R Q Q Q

29 Q Q L L L Q S Q Q S Q R R R Q Q

30 Q L Q L L S Q Q Q Q S R R Q R Q

31 L L L Q L S Q Q Q Q S R Q R R R

32 R L L L Q S Q Q Q Q S Q R R R L

33 Q R L L S Q Q Q Q Q Q S R R L Q

34 Q Q R L S Q Q Q Q Q Q S R L Q Q

35 Q Q Q R S Q Q Q Q Q Q S L Q Q Q

36 Q Q Q L R Q Q Q Q Q Q L R Q Q Q

37 Q Q L S S R Q Q Q Q L S S R Q Q

38 Q L Q S S Q R Q Q L Q S S Q R Q

39 L L S Q Q S R R L L S Q Q S R R

40 R L S Q Q S R L R L S Q Q S R L

41 Q R S Q Q S L Q Q R S Q Q S L Q

42 Q L R Q Q L R Q Q L R Q Q L R Q

43 L S S R L S S R L S S R L S S R

44 R S S L R S S L R S S L R S S L

45 F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8

0 R Q Q Q Q Q Q Q

1 S R Q Q Q Q Q Q

2 S Q R Q Q Q Q Q

3 Q S R R Q Q Q Q

4 Q S R Q R Q Q Q

5 Q S Q R R R Q Q

6 Q Q S R R Q R Q

7 Q Q S R Q R R R

8 Q Q S Q R R R L

9 Q Q Q S R R L Q

10 Q Q Q S R L Q Q

11 Q Q Q S L Q Q Q

12 Q Q Q L R Q Q Q

13 Q Q L S S R Q Q

14 Q L Q S S Q R Q

15 L L S Q Q S R R

16 R L S Q Q S R L

17 Q R S Q Q S L Q

18 Q L R Q Q L R Q

19 L S S R L S S R

20 R S S L R S S L

21 F F F F F F F F

Fig. 10. Snapshots for the 5-state firing squad synchronization algorithm on 8 and 16
cells

4 State-Change Complexity

Vollmar [1981] introduced a state-change complexity in order to measure the
efficiency of cellular algorithms and showed that Ω(n log n) state changes are
required for the synchronization of n cells in (2n− 2) steps.

[Theorem 4].[13] Ω(n log n) state-change is necessary for synchronizing n cells.
Let S(n) be total number of state changes for the five-state synchronization
algorithm A on n cells. We have S(n) = αn2 + 2S(n/2) = O(n2) for some
constant α. Thus we have:

[Theorem 5]. The five-state synchronization algorithm A has O(n2) state-
change complexity.



A Smallest Five-State Solution to the Firing Squad Synchronization Problem 301

Table 6. A comparison of 3n-step firing squad synchronization algorithms

Algorithm # States # Rules Time State- Generals’s Type Notes Ref.
complexity change position

complexity

Minsky and 13 – 3n + θn log n + c O(n log n) left thread 0 ≤ θn < 1 [7]
MacCarthy

[1967]
Fischer [1965] 15 – 3n − 4 O(n log n) left thread – [3]
Yunès [1994] 7 105 3n ± 2θn log n + c O(n log n) left thread 0 ≤ θn < 1 [15]
Yunès [1994] 7 107 3n ± 2θn log n + c O(n log n) left thread 0 ≤ θn < 1 [15]

Settle and 6 134 3n + 1 O(n2) right plane – [10]
Simon [2002]

Settle and 7 127 2n − 2 + k O(n2) arbitrary plane – [10]
Simon [2002]

Umeo 6 78 3n + O(log n) O(n2) left plane – [12]
et al. [2006]

Umeo 6 115 max(k, n − k + 1) O(n2) arbitrary plane – [12]
et al. [2006] + 2n+ O(log n)

this paper 5 67 3n − 3 O(n2) left plane n = 2k –

5 Conclusions

An existence or non-existence of five-state firing squad synchronization protocol
has been a long-standing, famous open problem for a long time. In this paper,
we have answered partially to this problem by proposing a smallest five-state
firing squad synchronization protocol that can synchronize any one-dimensional
cellular array of length n = 2k in 3n − 3 steps for any positive integer k. The
number five is the smallest one known at present in the class of synchronization
protocols proposed so far. Here, in the last, we present Table 6 that shows a
quantitative comparison of 3n-step synchronization protocols proposed so far
with respect to the number of internal states of each finite state automaton,
the number of transition rules realizing the synchronization and state-change
complexity.

References

1. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization
problem. Information and Control 10, 22–42 (1967)

2. Berthiaume, A., Bittner, T., Perkovic, L., Settle, A., Simin, J.: Bounding the firing
squad synchronization problem on a ring. Theoretical Computer Science 320, 213–
228 (2004)

3. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. of ACM 12(3), 388–394 (1965)

4. Gerken, H.-D.: Über Synchronisations - Probleme bei Zellularautomaten. Diplo-
marbeit, Institut für Theoretische Informatik, Technische Universität Braun-
schweig, p. 50 (1987)

5. Goto, E.: A minimal time solution of the firing squad problem. Dittoed course
notes for Applied Mathematics, vol. 298, pp. 52–59. Harvard University, Cambridge
(1962)



302 H. Umeo and T. Yanagihara

6. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoretical Computer Science 50, 183–238 (1987)

7. Minsky, M.L.: Computation: Finite and infinite machines, pp. 28–29. Prentice-Hall,
Englewood Cliffs (1967)

8. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Se-
quential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading MA
(1964)

9. Sanders, P.: Massively parallel search for transition-tables of polyautomata. In:
Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.) Proc. of the VI International
Workshop on Parallel Processing by Cellular Automata and Arrays, pp. 99–108.
Akademie (1994)

10. Settle, A., Simon, J.: Smaller solutions for the firing squad. Theoretical Computer
Science 276, 83–109 (2002)

11. Umeo, H., Hisaoka, M., Sogabe, T.: A Survey on Firing Squad Synchronization
Algorithms for One-Dimensional Cellular Automata. International Journal of Un-
conventional Computing 1, 403–426 (2005)

12. Umeo, H., Maeda, M., Hongyo, K.: A design of symmetrical six-state 3n-step firing
squad synchronization algorithms and their implementations. In: El Yacoubi, S.,
Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 157–168. Springer,
Heidelberg (2006)

13. Vollmar, R.: On cellular automata with a finite number of state changes. Comput-
ing, Supplementum 3, 181–191 (1981)

14. Waksman, A.: An optimum solution to the firing squad synchronization problem.
Information and Control 9, 66–78 (1966)

15. Yunès, J.B.: Seven-state solution to the firing squad synchronization problem. The-
oretical Computer Science 127, 313–332 (1994)



Small Semi-weakly Universal Turing Machines

Damien Woods1 and Turlough Neary2

1 Department of Computer Science,
University College Cork, Ireland

d.woods@cs.ucc.ie
2 TASS, Department of Computer Science,

National University of Ireland Maynooth, Ireland
tneary@cs.may.ie

Abstract. We present two small universal Turing machines that have
3 states and 7 symbols, and 4 states and 5 symbols respectively. These
machines are semi-weak which means that on one side of the input they
have an infinitely repeated word and on the other side there is the usual
infinitely repeated blank symbol. This work can be regarded as a con-
tinuation of early work by Watanabe on semi-weak machines. One of
our machines has only 17 transition rules making it the smallest known
semi-weakly universal Turing machine. Interestingly, our two machines
are symmetric with Watanabe’s 7-state and 3-symbol, and 5-state and
4-symbol machines, even though we use a different simulation technique.

1 Introduction

Shannon [22] was the first to consider the question of finding the smallest possible
universal Turing machine, where size is the number of states and symbols. From
the early sixties, Minsky and Watanabe had a running competition to see who
could come up with the smallest machines [10,11,23,24,25]. In 1962, Minsky [11]
found a small 7-state, 4-symbol universal Turing machine. Minsky’s machine
worked by simulating 2-tag systems, which where shown to be universal by Cocke
and Minsky [2]. Rogozhin [20] extended Minsky’s technique of 2-tag simulation
and found small machines with a number of state-symbol pairs. Subsequently,
some of Rogozhin’s machines were reduced in size or improved by Robinson [19],
Rogozhin [21], Kudlek and Rogozhin [6], Baiocchi [1]. Neary and Woods [12,15]
have recently found small machines that simulate another variant of tag systems
called bi-tag systems. All of the smallest known Turing machines, that obey the
standard definition (deterministic, one tape, one head), simulate either 2-tag or
bi-tag systems. They are plotted as circles and triangles in Figure 1.

Interestingly, Watanabe [23,24,25] managed to find small machines (some were
smaller than Minsky’s) by generalising the standard Turing machine definition.
Instead of having an infinitely repeated blank symbol to the left and right of the
input, Watanabe’s machines have an infinitely repeated word to one side of the
input and an infinitely repeated blank symbol to the other side. We call such
machines semi-weak. Watanabe found 7-state, 3-symbol, and 5-state, 4-symbol
semi-weakly universal machines that are plotted as hollow diamonds in Figure 1.

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 303–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



304 D. Woods and T. Neary

� : universal, bi-tag simulation, O(t6)
�� : semi-weakly universal, direct simulation, O(t2)
� : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t)

∞ : weakly universal, Rule 110 simulation, O(t4 log2 t)

�� : universal, 2-tag simulation, O(t4 log2 t)

universal

non-universal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

state

symbol

�

�

�

�∞

∞

∞

∞

��

��

�

�

Fig. 1. State-symbol plot of the smallest universal Turing machines to date. Our semi-
weak machines are shown as solid diamonds and Watanabe’s as hollow diamonds. The
standard and semi-weak machines are symmetric about the line where state = symbol.

A further generalisation are weak machines where we allow an infinitely re-
peated word to the left of the input and another to the right. Cook [3] and
Wolfram [26] have found very small weakly universal machines which are il-
lustrated as ∞ symbols in Figure 1. These weak machines simulate the cellular
automaton Rule 110. Cook [3] proved (the proof is also sketched in Wolfram [26])
that Rule 110 is universal by showing that it simulates cyclic tag systems, which
in turn simulate 2-tag systems.

The non-universal curve in Figure 1 is shown for the standard Turing ma-
chine definition. The 1-symbol case is trivial, and the 1-state case was shown
by Shannon [22] and, via another method, Hermann [4]. Pavlotskaya [16] and,
via another method, Kudlek [5], proved that the halting problem is decidable
for 2-state, 2-symbol machines, where one transition rule is reserved for halt-
ing. Pavlotskaya [17] proved that the halting problem is decidable for 3-state,
2-symbol machines, and also claimed [16], without proof, that the halting prob-
lem is decidable for 2-state, 3-symbol machines. Both cases assume that one
transition rule is reserved for halting. It is not difficult to generalise these results
to (semi-)weak machines with 1 state or 1 symbol. It is currently unknown if all
lower bounds in Figure 1 generalise to (semi-)weak machines.

It is also known from the work of Margenstern [7] and Michel [9] that the
region between the non-universal curve and the smallest standard universal ma-
chines contains (standard) machines that simulate the 3x+1 problem and other
related problems. These results, along with the weakly and semi-weakly univer-
sal machines, lend weight to the idea that finding non-universal lowerbounds in
this region is difficult. For results on other generalisations of the Turing machine
model see [8,18], for example.



Small Semi-weakly Universal Turing Machines 305

Figure 1 shows our two new semi-weak machines as solid diamonds. These
machines simulate cyclic tag systems, which were used [3] to show that Rule 110
is universal. It is interesting to note that our machines are symmetric with those
of Watanabe, despite the fact that we use a different simulation technique. Our
4-state, 5-symbol machine has only 17 transition rules, making it the smallest
known semi-weakly universal machine (Watanabe’s 5-state, 4-symbol machine
has 18 transition rules). The time overhead for our machines is polynomial. More
precisely, if M is a single tape deterministic Turing machine that runs in time
t, then M is simulated by each of our semi-weak machines in time O(t4 log2 t).
See [13,14,27,28] for further results and discussion related to the time complexity
of small universal Turing machines.

1.1 Preliminaries

All of the Turing machines considered in this paper are deterministic and have
one tape. Our 3-state, 7-symbol universal Turing machine is denoted U3,7 and
our 4-state, 5-symbol machine is denoted U4,5. We let 〈x〉 denote the encoding
of x. We write c1 � c2 when configuration c2 follows from c1 in 1 computation
step, and c1 �t c2 when c2 follows from c1 in t steps.

2 Cyclic Tag Systems

We begin by defining cyclic tag systems [3].

Definition 1 (cyclic tag system). A cyclic tag system C = α0, α1, . . . , αp−1

is a list of binary words αm ∈ {0, 1}∗ called appendants.

A configuration of a cyclic tag system consists of (i) a marker m ∈ {0, 1, . . . , p−1}
that points to a single appendant αm in C, and (ii) a dataword w=x0x1 . . . xl−1 ∈
{0, 1}∗. Intuitively the list C is a program with the marker pointing at instruction
αm. At the initial configuration the marker points at appendant α0 and w is the
binary input word.

Definition 2 (computation step of a cyclic tag system). A computation
step is deterministic and acts on a configuration in one of two ways:

– If x0 = 0 then x0 is deleted and the marker moves to appendant α(m+1) mod p.
– If x0 = 1 then x0 is deleted, the word αm is appended onto the right end

of w, and the marker moves to appendant α(m+1) mod p.

A cyclic tag system completes its computation if (i) the dataword is the empty
word, or (ii) it enters a repeating sequence of configurations. The complexity
measures of time and space are defined in the obvious way.

Example 1. (cyclic tag system computation) Let C = 00, 1010, 10 be a cyclic tag
system with input word 0010010. Below we give the first four steps of the com-
putation. In each configuration C is given on the left with the marked appendant
highlighted in bold font.



306 D. Woods and T. Neary

000000, 1010, 10 0010010 � 00,101010101010, 10 010010
� 00, 1010,101010 10010 � 000000, 1010, 10 001010
� 00,101010101010, 10 01010 � . . .

Cyclic tag systems were proved universal by their ability to simulate 2-tag
systems [3]. Recently we have shown that cyclic tag systems simulate Turing
machines in polynomial time:

Theorem 1 ([13]). Let M be a single-tape deterministic Turing machine that
computes in time t. There is a cyclic tag system CM that simulates the compu-
tation of M in time O(t3 log t).

Note that in order to calculate this upper bound we substitute space bounds for
time bounds whenever possible in the analysis.

3 3-State, 7-Symbol Universal Turing Machine

U3,7 simulates cyclic tag systems. The cyclic tag system binary input dataword
is written directly to the tape, no special encoding is required. The cyclic tag
system’s list of appendants is reversed and encoded to the left of the input. This
encoded list is repeated infinitely often to the left. U3,7 computes by erasing one
encoded appendant for each 0 on the dataword. If the symbol 1 is read then
the next available (encoded) appendant to the left is appended to the dataword,
and the appendant is erased. Since the appendants are repeated to the left, this
process increments (mod p) through the list of appendants.

3.1 U3,7

u1 u2 u3

0 λLu1 1/Ru2 1/Ru3

1 λLu2 zRu2 zRu3

λ bRu1 bRu2 bRu3

0/ λLu1 λLu3 bRu2

1/ 0Lu2 1Lu2

z bRu1 1Lu2 bRu1

b λLu1 λLu2 bRu3

Table of behaviour for U3,7. The start state is u1 and the blank symbol is 1/.

3.2 Encoding

For our 3-state, 7-symbol machine an appendant α ∈ {0, 1}∗ is encoded in the
following manner. Firstly, the order of the symbols in α is reversed to give αR.
Then the symbol 0 is encoded as 0/0/, and 1 is encoded as b0/. The encoded αR

is then prepended with the two symbols z0/. For example, if α = 100 then this



Small Semi-weakly Universal Turing Machines 307

appendant is encoded as 〈α〉 = z0/0/0/0/0/b0/. Finally the order of appendants are
also reversed so that the list of appendants α0, α1, . . . , αp−1 are encoded as
〈αp−1〉〈αp−2〉 . . . 〈α0〉. This encoded list is repeated infinitely often, to the left,
on the tape of U3,7. The blank symbol for U3,7 is 1/ and the cyclic tag system
input is written directly on the tape of U3,7. Thus the initial configuration of the
cyclic tag system given in Example 1 is encoded as

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ 0010010 1/1/1/ . . . (1)

where the underline denotes the tape head position, the three encoded appen-
dants are repeated infinitely to the left, and the extra whitespace is for human
readability purposes only.

3.3 Simulation

To show how U3,7 computes we simulate the first 3 steps of the cyclic tag com-
putation from Example 1.

Example 2. Beginning with the configuration given in Equation (1), U3,7 reads
the leftmost 0 in the input, in state u1, and then indexes the second encoded
appendant to the left, changing each symbol to λ until it reaches z, to give the
configuration

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ zλλλλλ λ010010 1/1/1/ . . .

These steps have the effect of reading and erasing the first 0 in the dataword
(input), and simulating the incrementing of the marker to the next (second)
appendant. The head then scans right, to read the second dataword symbol.

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ bbbbbb b010010 1/1/1/ . . .

Again we read 0 in the dataword which causes us to index the third appendant

u1u1u1, . . . z0/0/0/b0/ zλλλλλλλλλ λλλλλλ λλ10010 1/1/1/ . . .

and then return to the third input symbol.

u1u1u1, . . . z0/0/0/b0/ bbbbbbbb bbbbbb bb10010 1/1/1/ . . .

The input symbol 1 causes U3,7 to enter a ‘print cycle’ which iterates the fol-
lowing: we scan left in state u2, if we read 0/0/ then we scan right in state u2 and
print 0, if we read b0/ then we scan right in state u3 and print 1. We exit the
cycle if we read z0/. We now contine our simulation to the point where we are
about to read an encoded 1 in the third appendant

u3u3u3, . . . z0/0/0/bλ λλλλλλλλ λλλλλλ λλλ0010 1/1/1/ . . .

This causes U3,7 to scan right, append a 1 to the dataword, and return left to
read the next encoded symbol in the third appendant

u3u3u3, . . . z0/0/λλλ λλλλλλλλ λλλλλλ λλλ0010 11/1/1/ . . .



308 D. Woods and T. Neary

which causes a 0 to be printed, and we return left

u3u3u3, . . . zλλλλλ λλλλλλλλ λλλλλλ λλλ0010 101/1/1/ . . .

where the string z0/ marks the end of the encoded appendant and causes U3,7 to
exit the print cycle and return to state u1; the index cycle.

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ bbbbbb bbbbbbbb bbbbbb bbb0010 101/1/1/ . . .

The latter configuration shows the next set of encoded appendants to the left.
At this point we have simulated the third computation step in Example 1. � 

As can be seen in the preceding example, the computation of U3,7 is relatively
straightforward, so we refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system completing its compu-
tation (halting). The first condition (empty dataword) is simulated by U3,7 in
a very straightforward way: if the dataword is empty then U3,7 reads a blank
symbol 1/ in state u1, and immediately halts. The second condition (repeating
sequence of cyclic tag configurations) causes U3,7 to simulate this loop in an
easily detectable way, where some fixed sequence of appendants are repeatedly
appended to the dataword.

4 4 State, 5 Symbol Machine

U4,5 bears some similarities to the previous machine in that it simulates cyclic
tag systems which are encoded to the left. However its computation is some-
what more complicated. U4,5 simulates a restricted cyclic tag system where the
dataword does not contain consecutive 1 symbols. In particular, we say that the
dataword and all appendants are words from {0, 10}∗. Such a cyclic tag system
simulates an arbitrary cyclic tag system with only a small constant factor slow-
down (using the simulation from [13]). Furthermore, in two different cycles, U4,5

makes special use of whether specific substrings on the tape are of odd or even
length. Intuitively this kind of encoding helps to keep the program small.

4.1 U4,5

u1 u2 u3 u4

0 λLu1 λLu2 0/Ru3 0/Ru4

1 0/Ru2 1Lu2 1Ru3 1Ru4

λ 0Ru2 0Ru1 0Ru4 0Ru3

0/ 0Lu2 0Lu2 1Lu2

1/ 0Lu2 λLu3

Table of behaviour for U4,5. The start state is u1 and the blank symbol is 0/.



Small Semi-weakly Universal Turing Machines 309

4.2 Encoding

An appendant α ∈ {0, 10}∗ is encoded in the following manner. Firstly, the
order of the symbols in α is reversed to give αR. Then the symbol 0 is encoded
as 0λ1/0, and 1 is encoded as 00λ1/. The encoded αR is then prepended with the
symbol λ. For example, if α = 100 then this appendant is encoded as 〈α〉 =
λ0λ1/00λ1/000λ1/. Finally the order of appendants are also reversed so that the
list of appendants α0, α1, . . . , αp−1 are encoded as 〈αp−1〉〈αp−2〉 . . . 〈α0〉. This
encoded list is repeated infinitely often, to the left, on the tape of U4,5. The blank
symbol for U4,5 is 0/ and the cyclic tag system input, an element of {0, 10}∗, is
written directly on the tape of U4,5. Thus the initial configuration of the cyclic
tag system given in Example 1 is encoded as

u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 0010010 0/0/0/ . . . (2)

where the underline denotes the tape head position, the three encoded appen-
dants are repeated infinitely to the left, and the extra whitespace is for human
readability purposes only.

4.3 Simulation

In order to show how U4,5 computes, we simulate the first 4 steps of the cyclic
tag computation from Example 1. Example 3 shows U4,5 reading two 0 symbols
in the dataword and indexing appendants. Example 4 shows U4,5 reading a 10 in
the dataword, printing one appendant and indexing the next. Lemmata 1 and 2
build on these examples to give a proof of correctness.

Example 3 (U4,5; reading 0). Beginning with the configuration given in Equa-
tion (2), U4,5 reads the leftmost 0 in the input, in state u1, and begins the process
of indexing the second appendant to the left, using states u1 and u2.

�3 u2u2u2, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ0λ λ010010 0/0/0/ . . .

� u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/0000λ λ010010 0/0/0/ . . .

�4 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/λλλλλ λ010010 0/0/0/ . . .

until we read λ0, to give the configuration

�5 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ010010 0/0/0/ . . . (3)

Upon reading λ in state u1, U4,5 scans right, switching between states u1 and u2.
There are an even number of consecutive λ symbols, thus we exit the string of λ
symbols in state u1, ready to read the next input symbol.

�10 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ 000000000 0010010 0/0/0/ . . .

It can be seen from the proceeding configurations, that whenever U4,5 enters an
encoded appendant from the right and in state u1, then the encoded appendant
is erased. Assume, for the moment, that every symbol in the dataword is 0. Then



310 D. Woods and T. Neary

for each erased appendant it is the case that exactly one dataword symbol has
also been erased. Encoded appendants are of odd length. Therefore the string
of consecutive λ symbols is always of even length immediately after erasing an
appendant, e.g. in configurations of the form given in Equation (3). Thus it can
be seen that even though U4,5 switches between two states, u1 and u2, while
scanning right through the string of λ symbols, it always exits this string on the
right to read the next binary dataword symbol in state u1.

We continue our simulation: the next dataword symbol (again 0) is erased and
the next appendant is erased to give:

�35 u1u1u1, . . . λ0λ1/000λ1/ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ10010 0/0/0/ . . .

We then scan right through the (even length) string of λ symbols, switching
between states u1 and u2, to read the next dataword symbol in state u1:

�28 u1u1u1, . . . λ0λ1/000λ1/ 00000000000000000 000000000 0010010 0/0/0/ . . . (4)

The example is complete. � 

The following example illustrates how U4,5 simulates the reading of 10 in the
dataword. Specifically, the 10 is erased from the dataword, we append and erase
the indexed appendant, and finally we erase the following appendant.

Example 4 (U4,5; reading 10). Recall that, for U4,5, any 1 in the dataword is
immediately followed by a 0. When U4,5 reads a 1 in the dataword it then
(i) erases the 10 pair, (ii) enters a print cycle (to simulate appending the indexed
appendant) and then enters (iii) an index cycle (to simulate the reading of the
0 and indexing the next appendant).

We continue from configuration (4) above.

� u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000/0010 0/0/0/ . . .

� u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000/λ010 0/0/0/ . . .

� u2u2u2, . . . λ0λ1/000λ1/ 00000000000000000 000000000 000λ010 0/0/0/ . . .

�27 u2u2u2, . . . λ0λ1/000λ1/ 0λλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

We now begin reading the encoded appendant, which encodes 10.

� u2u2u2, . . . λ0λ1/000λ1/ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

This encoded appendant tells us that the symbol 1 (encoded as 00λ1/), and then
the symbol 0 (encoded as 0λ1/0), should be appended to the dataword.

� u3u3u3, . . . λ0λ1/000λλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

U4,5 now scans right, switching between state u3 and u4, eventually appending
either 0 or 1 to the dataword. If there are an odd number of λ symbols on, and
to the right of, the tape head then 1 is appended, if there is an even number



Small Semi-weakly Universal Turing Machines 311

then 0 is appended. Such a printing mechanism uses a relatively small number
of transition rules.

� u4u4u4, . . . λ0λ1/0000λ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

� u3u3u3, . . . λ0λ1/00000 λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 0/0/0/ . . .

�30 u4u4u4, . . . λ0λ1/00000 00000000000000000 000000000 000/0010 0/0/0/ . . .

We now pass over the dataword and append a 1.

�3 u4u4u4, . . . λ0λ1/00000 00000000000000000 000000000 000/00/10/ 0/0/0/0/ . . .

� u2u2u2, . . . λ0λ1/00000 00000000000000000 000000000 000/00/10/ 10/0/0/ . . .

We now scan left to find the next symbol to be appended

�37 u2u2u2, . . . λ0λ1/0λλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 10/0/0/ . . .

which is an encoded 0. We erase this encoded 0:

�2 u3u3u3, . . . λ0λλλλλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 10/0/0/ . . .

Now we are ready to scan right, switching between states u3 and u4. There are
an even number of λ symbols on, and to the right of, the tape head. This will
result in a 0 being appended to the dataword.

�41 u3u3u3, . . . λ00000000 00000000000000000 000000000 000/00/10/ 10/0/0/0/ . . .

� u2u2u2, . . . λ00000000 00000000000000000 000000000 000/00/10/ 100/0/0/ . . .

U4,5 now scans left, in state u2, and since there are no more encoded 0 or 1
symbols, it eventually reads the ‘end of appendant’ marker λ.

�42 u2u2u2, . . . λλλλλλλλλ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ0λ010 100/0/0/ . . .

Reading this λ in state u2 sends us to the right in the index cycle (switching
between states u2 and u1); however we enter the cycle in the ‘incorrect’ state u2

(we usually enter this cycle in state u1), but when we read the leftmost 0 in the
dataword

�37 u1u1u1, . . . 000000000 00000000000000000 000000000 000λ010 100/0/0/ . . .

this forces us to index another appendant (after which we will enter the next
index cycle in state u1; the ‘correct’ state). This is the main reason why we insist
that each 1 in the dataword is immediately followed by a 0.

We duplicate the configuration immediately above (while introducing some
shorthand notation for erased appendants and showing the next two encoded
appendants to the left).

u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 09 017 09 000λ010 100/0/0/ . . .



312 D. Woods and T. Neary

As already noted, we are forced to index the next appendant:

�50 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ9 λ17 λ9 λλλλ010 100/0/0/ . . .

We then scan right through the (even length) string of λ symbols, switching
between states u1 and u2 to read the next dataword read symbol in state u1:

�48 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ 000000000 09 017 09 0000010 100/0/0/ . . .

The example is complete. � 

The halting conditions for U4,5 are the same as those for U3,7; if the cyclic tag
systems halts then U4,5 reads a 0/ in state u1 and halts, if the cyclic tag systems
enters a repeating sequence of configurations then U4,5 simulates this loop in an
easily detectable way.

The previous two examples provide the main mechanics for the workings
of U4,5. The two lemmata below generalise these examples, and cover the cases
of read symbols 0 and 1 respectively. We assume that the cyclic tag dataword
and appendants are from {0, 10}∗, as described at the beginning of Section 4.

Lemma 1. Let c1 be a configuration of cyclic tag system C with read symbol 0,
and let c2 be the unique configuration that follows c1 using C (i.e. c1 �C c2).
Given an encoding of C and c1, then U4,5 computes the encoding of c2.

Proof. In the encoding of c1, U4,5 is reading 0 in state u1. This causes the head
to move left leaving a string of λ symbols. An encoded appendant is a word
over λ{〈0〉, 〈1〉〈0〉}∗. Notice if we enter either 〈0〉 = 0λ1/0 or 〈1〉 = 00λ1/ from
the right, in state u1, then we exit to the left, in the same state, leaving λλλλ
on the tape. Eventually the entire appendant is erased (converted into a string
of λ symbols), and U4,5 is reading the leftmost λ in the encoded appendant, in
state u1.

From the encoding, the length of each encoded appendant is odd. Furthermore,
the number of erased appendants is equal to number of erased dataword symbols.
Thus, the sum of the number of erased dataword symbols plus the number of
symbols in the erased appendants is even. We begin reading this even length
string of λ symbols from the left in state u1, alternating between states u1

and u2 as we scan right. We exit the string of λ symbols in state u1. We have
completed the index cycle and are reading the the leftmost (next read) symbol
from the dataword in state u1. From above, the next appendant is indexed. Thus
the tape encodes configuration c2. � 

Lemma 2. Let c1 be a configuration of cyclic tag system C with read symbol 1,
and let c2 be the unique configuration that follows c1 using C (i.e. c1 �C c2).
Given an encoding of C and c1, then U4,5 computes the encoding of c2.

Proof. Recall that any 1 in the dataword is immediately followed by a 0. Thus
our proof has two parts, a print cycle followed by an index cycle.

In the encoding of c1, U4,5 is reading 1 in state u1. This 1 is changed to 0/, and
the head moves to the right and erases an extra 0 symbol. The 0/ is changed to 0



Small Semi-weakly Universal Turing Machines 313

(which is used to trigger an extra index cycle below). The head then scans left
in state u2 leaving a string of λ symbols until we read the first (rightmost) non-
erased encoded appendant. An encoded appendant is a word over λ{〈0〉, 〈1〉〈0〉}∗.

Notice that if we enter 〈0〉 = 0λ1/0 from the right in state u2, we then (i) exit
to the right in state u4. However if we enter 〈1〉 = 00λ1/ from the right in state u2

we then (ii) exit to the right in state u3. In both cases we then scan to the right,
reading an odd number of λ symbols (a string of the form λ2i0λ, i ∈ N), while
switching between states u3 and u4. We pass to the right over the dataword,
which does not cause us to change state. Then in case (i) we append 0 to the
dataword and in case (ii) we append a 1 to the dataword.

We continue appending 0 or 1 symbols until we reach the leftmost end of the
(currently indexed) appendant by reading the symbol λ in state u2. We then scan
right, through a string of the form λ2j+10λ, j ∈ N, switching between states u2

and u1. After 2j + 1 steps we read 0 in state u1, which triggers an index cycle
(Lemma 1). After the index cycle we pass over the rightmost λ (which occupies
the location of the extra erased 0 mentioned above) and we are reading the next
encoded dataword symbol in state u1. Thus the tape encodes configuration c2.

� 

Let C be a cyclic tag system that runs in time t. After simulating t steps of C,
machines U3,7 and U4,5 have used O(t) workspace. Therefore both machines
simulate the computation of C in time O(t2). By applying Theorem 1 directly
we find that given a single-tape deterministic Turing machine M that computes
in time t, then machines U3,7 and U4,5 both simulate M in time O(t6 log2 t). We
observe that in the simulation from [13] the space used by C is only a constant
times that used by M . This observation, along with an (as yet unpublished)
improvement to [13], improve the time bound to O(t4 log2 t) for U3,7 and U4,5

simulating Turing machines M .

Acknowledgements

DW is supported by Science Foundation Ireland grant number 04/IN3/1524.
TN is supported by the Irish Research Council for Science, Engineering and
Technology.

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

2. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the
Association for Computing Machinery 11(1), 15–20 (1964)

3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)



314 D. Woods and T. Neary

4. Hermann, G.T.: The uniform halting problem for generalized one state Turing
machines. In: FOCS. Proceedings of the ninth annual Symposium on Switching
and Automata Theory, Schenectady, New York, October 1968, pp. 368–372. IEEE
Computer Society Press, Los Alamitos (1968)

5. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Sci-
ence 168(2), 241–255 (1996)

6. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
311–318. Springer, Heidelberg (2002)

7. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

8. Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for uni-
versality of Turing machines connected with a finite automaton. International Jour-
nal of Algebra and Computation 13(2), 133–202 (2003)

9. Michel, P.: Small Turing machines and generalized busy beaver competition. The-
oretical Computer Science 326, 45–56 (2004)

10. Minsky, M.: A 6-symbol 7-state universal Turing machines. Technical Report 54-
G-027, MIT (August 1960)

11. Minsky, M.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics,
Provelence, vol. 5, pp. 229–238. AMS (1962)

12. Neary, T.: Small polynomial time universal Turing machines. In: MFCSIT’06.
Fourth Irish Conference on the Mathematical Foundations of Computer Science
and Information Technology, Ireland, pp. 325–329. University College Cork (2006)

13. Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

14. Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Computer
Science 362(1–3), 171–195 (2006)

15. Neary, T., Woods, D.: Four small universal Turing machines. In: Margenstern, M.,
Rogozhin, Y. (eds.) MCU 2007. LNCS, vol. 4664, pp. 242–254. Springer, Heidelberg
(2007)

16. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes (Springer) 13(6), 537–541 (June 1973) (Translated
from Matematicheskie Zametki 13(6), 899–909 (June 1973))

17. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Avtomaty i Mashiny (Sufficient conditions for the halting problem
decidability of Turing machines) (in Russian), 91–118 (1978)

18. Priese, L.: Towards a precise characterization of the complexity of universal and
nonuniversal Turing machines. SIAM J. Comput. 8(4), 508–523 (1979)

19. Robinson, R.M.: Minsky’s small universal Turing machine. International Journal
of Mathematics 2(5), 551–562 (1991)

20. Rogozhin, Y.: Sem’ universal’nykh mashin T’juringa. Systems and theoretical pro-
gramming, Mat. Issled. 69, 76–90 (1982) (Seven universal Turing machines, in
Russian)

21. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

22. Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157–165 (1956)

23. Watanabe, S.: On a minimal universal Turing machines. Technical report, MCB
Report, Tokyo (August 1960)



Small Semi-weakly Universal Turing Machines 315

24. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.
Journal of the ACM 8(4), 476–483 (1961)

25. Watanabe, S.: 4-symbol 5-state universal Turing machines. Information Processing
Society of Japan Magazine 13(9), 588–592 (1972)

26. Wolfram, S.: A new kind of science. Wolfram Media, Inc. (2002)
27. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal

Turing machines. In: FOCS. 47th Annual IEEE Symposium on Foundations of
Computer Science, Berkeley, California, October 2006, pp. 439–446. IEEE, Los
Alamitos (2006)

28. Woods, D., Neary, T.: The complexity of small universal Turing machines. In: CiE
2007. Computation and Logic in the Real World: Third Conference of Computabil-
ity in Europe, Siena, Italy, June 2007. LNCS, vol. 4497, Springer, Heidelberg (2007)



Simple New Algorithms Which Solve the Firing

Squad Synchronization Problem: A 7-States
4n-Steps Solution

Jean-Baptiste Yunès

LIAFA - Université Paris 7 Denis Diderot
175, rue du chevaleret
75013 Paris - France

Jean-Baptiste.Yunes@liafa.jussieu.fr

Abstract. We present a new family of solutions to the firing squad
synchronization problem. All these solutions are built with a few finite
number of signals, which lead to simple implementations with 7 or 8
internal states. Using one of these schemes we are able to built a 7-states
4n+O(log n)-steps solution to the firing squad synchronization problem.
These solutions not only solves the unrestricted problem (initiator at one
of the two ends), but also the problem with initiators at both ends and
the problem on a ring.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the oldest prob-
lem in Cellular Automata. It has also been studied all over the years from the
beginning of the field up to these days. There exists a lot of solutions, for many
different variants of the problem but the subject is far from exhausted. Recent
progress in the quest for minimal states or minimal time solution to the problem
reveals that some intrinsic properties of that computation model are not so well
known.

1.1 The Problem

A linear cellular automata, simply CA, is a finite array of identical finite au-
tomata, each one having two direct neighbors. The whole machine operates at
discrete time-steps; every automaton reads its inputs (states of its neighbor cells
and its own state) and changes its state according to a transition function. Its
new state is then made available to its neighbors at the next time-step. As usual,
we define the quiescent state such as any quiescent cell remains quiescent when
its neighborhood is quiescent.

Then, we can define the Firing Squad Synchronization Problem, in short
FSSP, as follows. Consider arrays of identical automata which are initially all
in the quiescent state except the first one called the initiator. The FSSP is to
design a transition function such that after some steps all cells are in the same

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 316–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Simple New Algorithms Which Solve the FSSP 317

firing state which never occurred before. What is really challenging is that such
a transition function mustn’t depend on the length of the line: the same function
must be used for every possible finite line.

That problem has been long studied. First stated by J. Myhill in 1957, re-
ported by E. Moore in 1964 (see [5]), and since then, a very rich set of solu-
tions has grown up. The very first published solution is due to J. McCarthy &
M. Minsky in 1967 (see [4]). E. Goto (in 1962, see [2]) has built a so-called
minimal-time solution: one which takes only 2n− 2 steps to synchronize a line
of n automata. After that and independently, A. Waksman and R. Balzer in
1966 and 1967, see [10,1]) have got minimal-time solutions with very few states
(resp. 16 and 8 states). R. Balzer also proved that no 4-state minimal-time so-
lution exists. A famous record is held by J. Mazoyer who exhibited a 6-states
minimal-time solution in 1987 (see [3]). Since then the design of a 5-states so-
lution remains an open problem and actually nobody knows how to solve that
question.

During late years, surprising 6-states non minimal time solutions emerged.
A. Settle & J. Simon in 2002 (see [6]) built a tricky 3n-steps solution based on
Mazoyer’s solution, H. Umeo in 2006 (see [9]) exhibited a 3n Minsky’s solution,
and J.-B. Yunès in 2007 (see [12]) showed another 3n but thread-like Minsky’s
solution. Let’s also mention recent H. Umeo’s works (see [7,8]) on 6-states so-
lutions to the problem in two dimensions. These solutions contradict Mazoyer’s
claim that to minimize the number of states it is necessary to synchronize in
minimal-time and to break the symmetry of the solution. Settle and Simon’s so-
lution violates the first assertion: they synchronize a line of length n in 3n-steps.
Umeo’s and Yunes’s solutions violate both assertions as they are intrinsically
non minimal-time (in about 3n) and symmetric.

Much remains to be done to investigate non-minimal time solutions which can
be obtained with few states.

1.2 Our Contribution

In this paper, we focus our attention on the following features of solutions to the
FSSP:

– the number of states used by the transition function,
– the synchronization time,
– the number of different signals (and their slopes),
– the density of the solution (total amount of work),
– the flexibility of the ignition (location of initiator(s)).

We present different schemes which can be used to synchronize a line of n cellular
automata in time T (n) = 4σn or T (n) = (3 + σ)n (for any σ ≥ 1). We will also
show that such schemes are so simple that they lead, for σ = 1, to two 7-states
4n-steps solutions to the problem and some other 8-states interesting solution.
As the described processes are, by nature, symmetric, their implementation also
is, leading to symmetric solutions which solve the unrestricted problem (with



318 J.-B. Yunès

an initiator on the left or on the right end), the problem with initiators at both
ends and the problem on a ring. Two of these solutions are thread-like and use,
for a line of length n, an amount of work (i.e. the number of executed transitions
different from • • •→•, • being the convenient representation of the quiescent
state) in the order of n log n and one work in the order of n2.

2 A Solution in 8-States 4n-Steps

As figure 1(a) shows, the guideline to synchronize a line of n automata in time
4n is very simple, and only use two different slopes for signals: a signal of slope 1
and another one of slope 2. As one can see, the lightspeed signal (slope 1) and
a 1

2 -lightspeed (slope 2) signal are launched from the initiator located at one
end. The first signal reaches the other border and then bounces back. Then one
can easily note that the two signals respectively reach the two borders at the
same time 2n. Then the process is launched again from the two borders and in
a symmetric way: each new run synchronizes two sub-lines of length n

2 .

Theorem 1. With two signals of slope 1 and 2, it is possible to synchronize a
line of n automata in time 4n.

slope 2

slope 1

n

n

2n2n

4n

3n

(a) The skeleton (b) A line of length 22

Fig. 1. A solution in 8-states and 4n-steps



Simple New Algorithms Which Solve the FSSP 319

Proof. The total time is the limit

lim
p→∞

i=p∑
i=0

2n

2i
= 2n lim

p→∞

i=p∑
i=0

1
2i

= 4n

� 
2.1 An Implementation

Figure 1(b) shows a run on a line of length 22 (we used different greytones to
represent the states), and figure 2 gives the used transition rules. This solution
uses only 8 states, the initiator is ‘A’ and the firing state ‘G’. For convenience
we used ‘$’ to symbolize the border and ‘•’ for the quiescent state.

That transition function use 195 rules, and one can easily verify that the
function is symmetric, i.e. that if xyz→v is defined then so is zyx→v. The virtual
border property, i.e. that if xy$→v is defined then so are xyx→v and xyy→v, is
also verified (see [12] for details).

• $ • A B C D E F

$ • A B • • D •
• • • A B • • D •
A A A A
B B B B B A
C • • • • D •
D • • B • •
E D D A D D
F • • • •

A $ • A B C D E F

$ F C B B C
• F F F C C D
A C F B B C
B
C B C B B E
D B C B B
E
F C D C E C

B $ • A B C D E F

$ C A • •
• C C C C C C C
A
B C A • •
C A C A A C D
D • C • C •
E • C • D •
F C

C $ • A B C D E F

$ • • G F
• • • D B
A • • • • • D
B • • • • • •
C G D • • G F F
D F • F F
E D •
F B • F

D $ • A B C D E F

$ E
• E E
A E
B E C
C E E
D E
E
F E E C E E E

E $ • A B C D E F

$ A
• F F F
A
B F B
C F F
D
E A
F A F B F A A

F $ • A B C D E F

$ C •
• B B F •
A C B C C
B F
C B F •
D F F F
E • • • • •
F C •

Fig. 2. The transition rules of our 8-states 4n-steps solution

Theorem 2. There exists a 8-states cellular automata synchronizing any line
of length n in time 4n+O(logn) and work in O(n log n). That cellular automata
also solves the unrestricted problem, the problem with initiators at both ends and
the problem on a ring.



320 J.-B. Yunès

3 Solutions in 4σn, σ ∈ Q

The preceding scheme can easily be generalized to produce a synchronization
of a line of length n in time 4σn (if σ ≥ 1) and still work in O(n log n). The
trick is to obtain two initiators, one on each border at the same time. Figure 3
illustrates the construction. At the limit the line is synchronized at time

lim
p→∞

i=p∑
i=0

2σn

2i
= 4σn

n

σn

2σn 2σn

Fig. 3. A solution in time 4σn

Theorem 3. For any σ ∈ Q, σ ≥ 1, there exists a solution following a scheme
with two signals of slopes σ and 2σ, to the unrestricted fssp in time 4σn, the
problem with an initiator at each end, and the problem on a ring in time 2σn,
and work in O(n log n).

Proof. A finite number of states is sufficient to build any signal with slope a
rational number. � 

4 Another Solution in 4n But 7-States

We can also use Minsky’s strategy to construct a 4n-steps solution. This is
illustrated in figure 4(a). Minsky looks for the middle to launch, from the middle,
the two half sub-lines. In our solution, we look for the middle to mark the two
half sub-lines, but ignition takes place on the opposite ends of the sub-lines.



Simple New Algorithms Which Solve the FSSP 321

2n

1

1
3

n

4n

n

3n
2

(a) The skeleton (b) A line of length 22

Fig. 4. A solution in 7-states and 4n-steps

Theorem 4. With two signals of slope 1 and 3, it is possible to synchronize a
line of n automata in 4n +O(log n) steps with O(n log n) work.

Proof. The total time is the limit

lim
p→∞

i=p∑
i=0

(
3n

2
+

n

2
)/2i = 2n lim

p→∞

i=p∑
i=0

1
2i

= 4n � 

4.1 An Implementation

Figure 5 gives the transition function of the 7-states solution to the problem.
It is based on our 6-states 3n-steps (see [12]) and it consists of 162 rules (the

initiator is ‘A’ and the firing state ‘F’). It is easy to verify that the function
is symmetric, i.e. that if xyz→v is defined then is zyx→v. The virtual border
property, i.e. that if xy$→v is defined then are xyx→v and xyy→v, is also
verified (see [12] for details).

Theorem 5. There exists a 7-states cellular automata synchronizing any line
of length n in time 4n+O(logn) and work in O(n log n). That cellular automata
also solves the unrestricted problem, the problem with an initiator at both ends
and the problem on a ring.



322 J.-B. Yunès

• $ • A B C D E

$ • C B • • E
• • • C B • • E
A C C C B C
B B B B B A
C • • A • •
D • • C • •
E E E E

A $ • A B C D E

$ F B F A C C
• B B B A
A F B F A C C
B A A A E
C C A C C C
D C C E C C
E

B $ • A B C D E

$ D A A B
• D D C D D D
A A C A A E
B D A A B
C A D A A
D B D E B B
E

C $ • A B C D E

$ D B C D
• D B C •
A D D D D D
B B B D B B
C D B C D
D C C C C
E D • D D

D $ • A B C D E

$ • • •
• • • A •
A • • • E •
B • • • •
C A E A
D • • A •
E • • • •

E $ • A B C D E

$ A
• D D D
A
B
C E
D A D A A
E D A

Fig. 5. The transition rules of our 7-states 4n-steps solution

5 Other Linear-Time Solutions, (3 + σ)n, σ ∈ Q

As illustrated in figure 6, the limit is

lim
p→∞

i=p∑
i=1

(3 + σ)n
2i

= (3 + σ)n

σ

σ

1

3

Fig. 6. A solution in time (3 + σ)n

Theorem 6. For any σ ∈ Q, σ ≥ 1, there exists a solution in time (3+σ)n and
work ′(n log n), following a scheme with 3 signals of slopes 1, 3 and σ, for the
unrestricted FSSP, the problem with an initiator at each end, and the problem
on a ring in time 3+σ

2 n.



Simple New Algorithms Which Solve the FSSP 323

6 An Alternate Solution in 7-States 4n-Steps

Here, we used the same scheme as in section 4 but based our implementation on
Umeo’s 6-states solution (see [9]) on which some slight modifications have been
made. Those modifications lead to a solution which verify the virtual border
property (see [12]) and then solves not only the unrestricted problem but also
the problem with initiators at both ends and the problem on a ring. But doing
so, we lost the generalization property (ability to synchronize whatever is the
position of the initiator). That solution is not thread-like but plain (work in
O(n2)).

The figure 7(a) shows a run on a line of length 20.

(a) n = 20

• $ • A B C D E

$ • A • A • E
• • • A • A • E
A A A A
B • • •
C A A B
D • • •
E E E E

A $ • A B C D E

$ B B
• D D
A B B
B B D B
C
D B D B B
E

B $ • A B C D E

$ B F • •
• E E • •
A B B B
B F E B F • •
C • • • •
D • • • •
E

C $ • A B C D E

$ B B
• B B B
A
B B
C B B
D B D
E

D $ • A B C D E

$
• B B D •
A D C C
B B D D
C B C D C C
D D C C •
E • • •

E $ • A B C D E

$ C
• D D D
A
B
C
D C D C C
E D C

(b) Rules of a 7-states 4n-steps solution

Fig. 7. Another 7-states solution in 4n-steps

The transition function is made of 108 rules and is shown in figure 7(b). As all
the preceding constructions, this one also solves the unrestricted problem, the
problem with an initiator at both ends and the problem on a ring.

7 Conclusion

In this paper, we present two new simple schemes to build new non minimal time
solutions to the problem and some extensions (both ends, ring). The intrinsic
simplicity of these schemes is illustrated by our construction of three simple
implementations which synchronizes in about 4n: two with 7-states and one
with 8-states. These schemes naturally leads to thread-like solutions which total



324 J.-B. Yunès

amount of work in the order of n log n, but also work if we use plain solutions
which work in the order of n2.

We don’t know if it is possible to build a 6-states solution with such
constructions.

References

1. Balzer, R.: An 8-State Minimal Time Solution to the Firing Squad Synchronization
Problem. Information and Control 10, 22–42 (1967)

2. Goto, E.: A Minimum Time Solution of the Firing Squad Problem. Course Notes
for Applied Mathematics, vol. 298. Harvard University, Cambridge (1962)

3. Mazoyer, J.: A Six-State Minimal Time Solution to the Fring Squad Synchroniza-
tion Problem. Theoretical Computer Science 50, 183–238 (1987)

4. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

5. Moore, E.F.: The Firing Squad Synchronization Problem. In: Moore, E.F. (ed.)
Sequential Machines. Selected Papers, pp. 213–214. Addison-Wesley, Reading MA
(1964)

6. Settle, A., Simon, J.: Smaller Solutions for the Firing Squad. Theoretical Computer
Science 276(1), 83–109 (2002)

7. Umeo, H.: An Efficient Design of Two-Dimensional Firing Squad Synchroniza-
tion Problem. In: Eighth International Workshop on Cellular Automata, Prague,
Czechia (2002)

8. Umeo, H., Maeda, M., Fujiwara, N.: An Efficient Mapping Scheme for Embed-
ding Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-
Dimensional Arrays. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI
2002. LNCS, vol. 2493, pp. 69–81. Springer, Heidelberg (2002)

9. Umeo, H., Maeda, M., Hongyo, K.: of Symmetrical Six-State 3n-Step Firing
Squad Synchronization Algorithms and Their Implementations. In: El Yacoubi,
S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 157–168.
Springer, Heidelberg (2006)

10. Waksman, A.: An Optimum Solution to the Firing Squad Synchronization Prob-
lem. Information and Control 9, 66–78 (1966)

11. Yunès, J.-B.: Seven States Solutions to the Firing Squad Synchronization Problem.
Theoretical Computer Science 127(2), 313–332 (1994)

12. Yunès, J.-B.: An Intrinsically Non Minimal-Time Minsky-like 6-States Solution to
the Firing Squad Synchronization Problem. In: RAIRO (submitted, 2007)



Author Index

Adamatzky, Andrew 1
Alhazov, Artiom 110, 122

Baumeister, Dorothea 134
Bezem, Marc 182
Bolognesi, Tommaso 146
Bournez, Olivier 12
Burgin, Mark 24

Campagnolo, Manuel L. 39
Castellanos, Juan 218

Dassow, Jürgen 158
De Mol, Liesbeth 170

Fisher, John 182
Freund, Rudolf 110

Gruber, Hermann 193

Hainry, Emmanuel 12
Hamkins, Joel David 62
Holzer, Markus 193

Kari, Jarkko 72
Koiran, Pascal 80
Kutrib, Martin 193

Manea, Florin 218
Matveevici, Artiom 205
Mingo López, Luis Fernando de 218
Mitrana, Victor 218

Morita, Kenichi 90
Mráz, Frantisek 230

Neary, Turlough 242, 303
Nishio, Hidenosuke 255

Ojakian, Kerry 39
Okhotin, Alexander 267
Oswald, Marion 110
Otto, Friedrich 230

Pérez-Jiménez, Mario J. 122
Plátek, Martin 230

Rogozhin, Yurii 205
Rothe, Jörg 134

Subramanian, K.G. 99

Teytaud, Olivier 279
Truthe, Bianca 158

Umeo, Hiroshi 291

Verlan, Sergey 110, 205

Woods, Damien 242, 303

Yamaguchi, Yoshikazu 90
Yanagihara, Takashi 291
Yunès, Jean-Baptiste 316


	Title Page
	Preface
	Sponsors
	Table of Contents
	Encapsulating Reaction-Diffusion Computers
	From Reaction-Diffusion Computers to Plasmodium
	Spanning Trees
	Phyrasum Machines
	References

	On the Computational Capabilities of Several Models
	Dynamical Systems and Polynomial Cauchy Problems
	TheGPAC
	Planar Mechanisms
	Distributed Computations
	Populations Protocols
	Another Model

	Computing with Distributed Games
	Game Theory Models
	Repeated Games
	Games on a Graph
	Myopic Dynamic
	Fictious Player Dynamic
	Evolutionary Game Theory Models

	References

	Universality, Reducibility, and Completeness
	Introduction
	Universality of Algorithms and Reducibility
	Universality of Classes of Algorithms, Models of Computation, and Reducibility
	Completeness of Problems and Reducibility
	Reduction of Properties and Deduction of Theorems
	Conclusion
	References

	Using Approximation to Relate Computational Classes over the Reals
	Introduction
	Technical Preliminaries
	Approximation
	Function Algebras

	Characterizing Computable Analysis
	Elementary Computability
	Rephrasing Computable Analysis
	A Function Algebra for the Computable Functions over the Reals
	GPAC Computability

	Making Classes Analytic
	Future Work
	References

	A Survey of Infinite Time Turing Machines*
	A Brief Review of Infinite Time Turing Machines
	A Survey of Recent Developments
	Infinite Time Complexity Theory
	Infinite Time Computable Model Theory
	Infinite Time Computable Equivalence Relation Theory
	New Models of Ordinal Computation

	References

	The Tiling Problem Revisited(Extended Abstract)
	Introduction
	Mortality Problems of Turing Machines and Piecewise Affine Maps
	Reduction into the Euclidean Tiling Problem
	Reduction into the Tiling Problem on the Hyperbolic Plane
	References

	Decision Versus Evaluation in Algebraic Complexity
	Introduction
	The Blum-Shub-Smale Model
	Valiant’s Model
	The Transfer Theorems
	AProofSketch
	The Real Case
	The Complex Case

	On the Hypothesis That VPSPACE Families Have Small Circuits
	References

	A Universal Reversible Turing Machine
	Introduction
	Preliminaries
	Reversible Turing Machines (RTMs)
	Cyclic Tag Systems (CTAGs)

	A 17-State 5-Symbol URTM
	Concluding Remarks
	References1. Baiocchi, C.: Three

	P Systems and Picture Languages
	Introduction
	Basic Definitions
	Array-Rewriting P Systems
	BPG Array P System
	Array Rewriting Parallel P Systems
	Theorem
	Theorem
	Theorem

	Conclusion
	References

	Partial Halting in P Systems Using Membrane Rules with Permitting Contexts
	Introduction
	Definitions
	Preliminaries
	Matrix Grammars
	Register Machines
	A General Model of P Systems with Permitting Contexts

	Results
	General Observations
	Results for Symport/Antiport Systems
	Results for P Systems with Conditional Uniport Rules
	Results for Evolution/Communication P Systems

	Conclusion
	References

	Uniform Solution of QSAT UsingPolarizationless Active Membranes*
	Introduction
	Preliminaries
	P Systems with Polarizationless Active Membranes

	A Uniform Solution of {\tt QSAT}
	Conclusions
	References

	Satisfiability Parsimoniously Reduces to theTantrix${^TM}$ Rotation Puzzle Problem*
	Introduction
	Preliminaries
	Definition of Some Complexity-Theoretic Notions
	Variants of the Tantrix Rotation Puzzle Problem

	Satisfiability Parsimoniously Reduces to the Tantrix${^TM}$Rotation Puzzle Problem
	Wire Subpuzzles
	Gate Subpuzzles
	Input and Output Subpuzzles
	Proof of Theorem 4

	The Unique Tantrix${^TM}$ Rotation Puzzle Problem Is DP-Complete Under Randomized Reductions
	References

	Planar Trivalent Network Computation
	Introduction
	Planar Trinets, Duals, and Computational Universality
	A Fully Deterministic Planar Trinet Growth Algorithm
	Visual Indicators and Computations with Constant $k$
	Emergent Dimensionality
	Conclusions
	References

	On the Power of Networks of Evolutionary Processors
	Introduction
	Definitions
	Networks with Only Deletion and Substitution Nodes
	Networks with Only Insertion and Substitution Nodes
	Networks with Only Deletion and Insertion Nodes
	Conclusion
	References

	Study of Limits of Solvability in Tag Systems
	Introduction
	Definition of Tag Systems and Notational Conventions
	Results on the Limits of Solvability in Tag Systems

	Solvability of the Halting and Reachability Problem of the Class TS(2,2)
	Discussion
	References

	Query Completeness of Skolem Machine Computations
	The Geolog Language and Skolem Machines
	Complete Geolog Trees
	Discussion and Conclusion
	References

	More on the Size of Higman-Haines Sets:Effective Constructions
	Introduction
	Preliminaries
	Effective Higman-Haines Set Sizes
	Regular Languages
	Context-Free and Linear Context-Free Languages

	Conclusions
	References

	Insertion-Deletion Systems with One-Sided Contexts
	Introduction
	Prerequisites
	Systems with One-Sided Context
	Complexity Measures
	Conclusions
	References

	Accepting Networks of Splicing Processors with Filtered Connections
	Introduction
	Basic Definitions
	Completeness of ANSPFCs
	References

	Hierarchical Relaxations of the CorrectnessPreserving Property for Restarting Automata*
	Introduction
	Definitions and Notation
	Relaxations of the Correctness Preserving Property
	Conclusion
	References

	Four Small Universal Turing Machines
	Introduction
	Preliminaries

	Bi-TagSystems
	Universal Turing Machines
	Universal Turing Machine Algorithm Overview
	$U_{9,3}$
	$U_{5,5}$
	$U_{6,4}$
	$U_{18,2}$

	References

	Changing the Neighborhood of Cellular Automata
	Introduction
	Definitions
	Infinitely Many CA Induced by Changing the Neighborhood
	Equivalence Problem of CA
	Neighborhood Family and Permutation Family
	Reversibility of CA
	Concluding Remarks and Acknowledgements
	References

	A Simple P-Complete Problem and Its Representations by Language Equations*
	Introduction
	A Variant of the Circuit Value Problem
	Encoding of Circuits
	Representation by Language Equations
	Representation by a Conjunctive Grammar
	Representation by an LL(1) Boolean Grammar
	Conclusion
	References

	Slightly Beyond Turing’s Computability for Studying Genetic Programming
	Introduction
	Framework and Notations
	Standard Case: Finite Time Algorithms
	Iterative Algorithms
	Complexity
	Conclusion
	References

	A Smallest Five-State Solution to the Firing Squad Synchronization Problem
	Introduction
	Firing Squad Synchronization Problem
	Firing Squad Synchronization Problem
	A Class of 3n-Step Synchronization Algorithms

	Five-State Synchronization Algorithm
	Two-State Implementation for Ripple Drivers
	Three-State Implementation for a- and b-Signals
	Four-State Implementation for Searching Center Cells
	Transition Rules for Synchronizing Small Subarrays of Lengthn = 2
	Five-State Synchronization Protocol

	State-Change Complexity
	Conclusions
	References

	Small Semi-weakly Universal Turing Machines
	Introduction
	Preliminaries

	Cyclic Tag Systems
	3-State, 7-Symbol Universal Turing Machine
	$U_{3,7}$
	Encoding
	Simulation

	4 State, 5 Symbol Machine
	$U_{4,5}$
	Encoding
	Simulation

	References

	Simple New Algorithms Which Solve the Firing Squad Synchronization Problem: A 7-States 4n-Steps Solution
	Introduction
	The Problem
	Our Contribution

	A Solution in 8-States 4n-Steps
	An Implementation

	Solutions in ${4\sigma n}$, ${\sigma\in\bbbq}$
	Another Solution in 4n But 7-States
	An Implementation

	Other Linear-Time Solutions, $(3+\sigma)n$, $\sigma\in\bbbq$
	An Alternate Solution in 7-States 4n-Steps
	Conclusion
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




